Acronym | penrapdit |
Name |
(pen,rap)-duotegum, tegum product of pentachoron and rectified pentachoron |
Face vector | 15, 90, 290, 565, 700, 550, 250, 50 |
Due to the matching circumradii of the tegum product factors the lacing edges of this polyzetton are of unit size too. Accordingly it qualifies as an 8D CRF.
Incidence matrix according to Dynkin symbol
xo3oo3oo3oo oo3ox3oo3oo&#zx → height = 0 (tegum product of pen and rap) o.3o.3o.3o. o.3o.3o.3o. | 5 * | 4 10 0 | 6 40 30 0 0 | 4 60 120 10 20 0 0 | 40 180 40 80 5 5 | 120 60 120 20 20 | 40 80 30 30 | 20 20 .o3.o3.o3.o .o3.o3.o3.o | * 10 | 0 5 6 | 0 10 30 3 6 | 0 10 60 15 30 3 2 | 5 60 30 60 15 10 | 30 30 60 30 20 | 15 30 30 20 | 15 10 ----------------------------+------+----------+------------------+----------------------+----------------------+-------------------+--------------+------ x. .. .. .. .. .. .. .. | 2 0 | 10 * * | 3 10 0 0 0 | 3 30 30 0 0 0 0 | 30 90 10 20 0 0 | 90 30 60 5 5 | 30 60 15 15 | 15 15 oo3oo3oo3oo oo3oo3oo3oo&#x | 1 1 | * 50 * | 0 4 6 0 0 | 0 6 24 3 6 0 0 | 4 36 12 24 3 2 | 24 18 36 12 8 | 12 24 18 12 | 12 8 .. .. .. .. .. .x .. .. | 0 2 | * * 30 | 0 0 5 1 2 | 0 0 10 5 10 2 1 | 0 10 10 20 10 5 | 5 10 20 20 10 | 5 10 20 10 | 10 5 ----------------------------+------+----------+------------------+----------------------+----------------------+-------------------+--------------+------ x.3o. .. .. .. .. .. .. | 3 0 | 3 0 0 | 10 * * * * | 2 10 0 0 0 0 0 | 20 30 0 0 0 0 | 60 10 20 0 0 | 20 40 5 5 | 10 10 xo .. .. .. .. .. .. ..&#x | 2 1 | 1 2 0 | * 100 * * * | 0 3 6 0 0 0 0 | 3 18 3 6 0 0 | 18 9 18 3 2 | 9 18 9 6 | 9 6 .. .. .. .. .. ox .. ..&#x | 1 2 | 0 2 1 | * * 150 * * | 0 0 4 1 2 0 0 | 0 6 4 8 2 1 | 4 6 12 8 4 | 4 8 12 6 | 8 4 .. .. .. .. .o3.x .. .. | 0 3 | 0 0 3 | * * * 10 * | 0 0 0 5 0 4 0 | 0 0 10 0 10 0 | 0 10 0 20 0 | 5 0 20 0 | 10 0 .. .. .. .. .. .x3.o .. | 0 3 | 0 0 3 | * * * * 20 | 0 0 0 0 5 1 1 | 0 0 0 10 5 5 | 0 0 10 10 10 | 0 5 10 10 | 5 5 ----------------------------+------+----------+------------------+----------------------+----------------------+-------------------+--------------+------ x.3o.3o. .. .. .. .. .. ♦ 4 0 | 6 0 0 | 4 0 0 0 0 | 5 * * * * * * ♦ 10 0 0 0 0 0 | 30 0 0 0 0 | 10 20 0 0 | 5 5 xo3oo .. .. .. .. .. ..&#x ♦ 3 1 | 3 3 0 | 1 3 0 0 0 | * 100 * * * * * | 2 6 0 0 0 0 | 12 3 6 0 0 | 6 12 3 2 | 6 4 xo .. .. .. .. ox .. ..&#x ♦ 2 2 | 1 4 1 | 0 2 2 0 0 | * * 300 * * * * | 0 3 1 2 0 0 | 3 3 6 2 1 | 3 6 6 3 | 6 3 .. .. .. .. oo3ox .. ..&#x ♦ 1 3 | 0 3 3 | 0 0 3 1 0 | * * * 50 * * * | 0 0 4 0 2 0 | 0 6 0 8 0 | 4 0 12 0 | 8 0 .. .. .. .. .. ox3oo ..&#x ♦ 1 3 | 0 3 3 | 0 0 3 0 1 | * * * * 100 * * | 0 0 0 4 1 1 | 0 0 6 4 4 | 0 4 6 6 | 4 4 .. .. .. .. .o3.x3.o .. ♦ 0 6 | 0 0 12 | 0 0 0 4 4 | * * * * * 5 * ♦ 0 0 0 0 5 0 | 0 0 0 10 0 | 0 0 10 0 | 5 0 .. .. .. .. .. .x3.o3.o ♦ 0 4 | 0 0 6 | 0 0 0 0 4 | * * * * * * 5 ♦ 0 0 0 0 0 5 | 0 0 0 0 10 | 0 0 0 10 | 0 5 ----------------------------+------+----------+------------------+----------------------+----------------------+-------------------+--------------+------ xo3oo3oo .. .. .. .. ..&#x ♦ 4 1 | 6 4 0 | 4 6 0 0 0 | 1 4 0 0 0 0 0 | 50 * * * * * ♦ 6 0 0 0 0 | 3 6 0 0 | 3 2 xo3oo .. .. .. ox .. ..&#x ♦ 3 2 | 3 6 1 | 1 6 3 0 0 | 0 2 3 0 0 0 0 | * 300 * * * * | 2 1 2 0 0 | 2 4 2 1 | 4 2 xo .. .. .. oo3ox .. ..&#x ♦ 2 3 | 1 6 3 | 0 3 6 1 0 | 0 0 3 2 0 0 0 | * * 100 * * * | 0 3 0 2 0 | 3 0 6 0 | 6 0 xo .. .. .. .. ox3oo ..&#x ♦ 2 3 | 1 6 3 | 0 3 6 0 1 | 0 0 3 0 2 0 0 | * * * 200 * * | 0 0 3 1 1 | 0 3 3 3 | 3 3 .. .. .. .. oo3ox3oo ..&#x ♦ 1 6 | 0 6 12 | 0 0 12 4 4 | 0 0 0 4 4 1 0 | * * * * 25 * ♦ 0 0 0 4 0 | 0 0 6 0 | 4 0 .. .. .. .. .. ox3oo3oo&#x ♦ 1 4 | 0 4 6 | 0 0 6 0 4 | 0 0 0 0 4 0 1 | * * * * * 25 ♦ 0 0 0 0 4 | 0 0 0 6 | 0 4 ----------------------------+------+----------+------------------+----------------------+----------------------+-------------------+--------------+------ xo3oo3oo .. .. ox .. ..&#x ♦ 4 2 | 6 8 1 | 4 12 4 0 0 | 1 8 6 0 0 0 0 | 2 4 0 0 0 0 | 150 * * * * | 1 2 0 0 | 2 1 xo3oo .. .. oo3ox .. ..&#x ♦ 3 3 | 3 9 3 | 1 9 9 1 0 | 0 3 9 3 0 0 0 | 0 3 3 0 0 0 | * 100 * * * | 2 0 2 0 | 4 0 xo3oo .. .. .. ox3oo ..&#x ♦ 3 3 | 3 9 3 | 1 9 9 0 1 | 0 3 9 0 3 0 0 | 0 3 0 3 0 0 | * * 200 * * | 0 2 1 1 | 2 2 xo .. .. .. oo3ox3oo ..&#x ♦ 2 6 | 1 12 12 | 0 6 24 4 4 | 0 0 12 8 8 1 0 | 0 0 4 4 2 0 | * * * 50 * | 0 0 3 0 | 3 0 xo .. .. .. .. ox3oo3oo&#x ♦ 2 4 | 1 8 6 | 0 4 12 0 4 | 0 0 6 0 8 0 1 | 0 0 0 4 0 2 | * * * * 50 | 0 0 0 3 | 0 3 ----------------------------+------+----------+------------------+----------------------+----------------------+-------------------+--------------+------ xo3oo3oo .. oo3ox .. ..&#x ♦ 4 3 | 6 12 3 | 4 18 12 1 0 | 1 12 18 4 0 0 0 | 3 12 6 0 0 0 | 3 4 0 0 0 | 50 * * * | 2 0 xo3oo3oo .. .. ox3oo ..&#x ♦ 4 3 | 6 12 3 | 4 18 12 0 1 | 1 12 18 0 4 0 0 | 3 12 0 6 0 0 | 3 0 4 0 0 | * 100 * * | 1 1 xo3oo .. .. oo3ox3oo ..&#x ♦ 3 6 | 3 18 12 | 1 18 36 4 4 | 0 6 36 12 12 1 0 | 0 12 12 12 3 0 | 0 4 4 3 0 | * * 50 * | 2 0 xo3oo .. .. .. ox3oo3oo&#x ♦ 3 4 | 3 12 6 | 1 12 18 0 4 | 0 4 18 0 12 0 1 | 0 6 0 12 0 3 | 0 0 4 0 3 | * * * 50 | 0 2 ----------------------------+------+----------+------------------+----------------------+----------------------+-------------------+--------------+------ xo3oo3oo .. oo3ox3oo ..&#x ♦ 4 6 | 6 24 12 | 4 36 48 4 4 | 1 24 72 16 16 1 0 | 6 48 24 24 4 0 | 12 16 16 6 0 | 4 4 4 0 | 25 * xo3oo3oo .. .. ox3oo3oo&#x ♦ 4 4 | 6 16 6 | 4 24 24 0 4 | 1 16 36 0 16 0 1 | 4 24 0 24 0 4 | 6 0 16 0 6 | 0 4 0 4 | * 25
© 2004-2024 | top of page |