Acronym | ..., ofx3xoo4ooo&#xt || o3o4x |
Name |
cube atop (oct,co)-ursachoron, (oct,co)-ursachoron based wedge |
Circumradius | sqrt[354+171 sqrt(2)+100 sqrt(5)+63 sqrt(10)]/16 = 1.994779 |
Lace city in approx. ASCII-art |
o3o4x x3o4o f3o4o o3x4o |
Dihedral angles |
|
Face vector | 32, 150, 244, 159, 35 |
Confer |
|
This ursachoron based wedge might look to exist more generally for any ofx3xooNooo&#xt || o3oNx. None the less, their heights calculate to be zero both for N=3 and N=5. (E.g., for N=5 one would get .xofo3.ooox5.oxoo&#xt, the mono-diminished vertex first rotunda of ex.)
ofx3xoo4ooo&#xt || o3o4x height = sqrt[sqrt(2)-2 sqrt(5)+sqrt(10)]/2 = 0.161520 shear = sqrt[-12+8 sqrt(2)+6 sqrt(5)-4 sqrt(10)]/4 = 0.071154 12 * * * | 4 2 2 0 0 0 0 0 | 2 2 4 4 1 4 1 0 0 0 0 0 0 | 1 2 2 2 2 4 0 2 0 0 0 0 0 0 0 | 1 1 2 2 1 0 0 * 6 * * | 0 4 0 1 4 0 0 0 | 0 0 4 0 4 8 0 4 4 0 0 0 0 | 0 1 4 0 0 4 8 4 4 1 0 0 0 0 0 | 1 0 1 4 4 1 0 * * 6 * | 0 0 0 1 0 4 4 0 | 0 0 0 0 4 0 0 4 0 4 8 4 0 | 0 0 4 0 0 0 8 0 4 0 1 4 4 1 0 | 1 0 0 4 4 1 1 * * * 8 | 0 0 3 0 3 0 3 3 | 0 0 0 3 0 6 3 3 6 0 3 6 3 | 0 0 0 3 1 3 3 6 6 3 0 1 3 3 1 | 0 1 3 1 3 3 1 ---------+------------------------+------------------------------------+------------------------------------+--------------- 2 0 0 0 | 24 * * * * * * * | 1 1 1 1 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 | 1 1 1 1 0 0 0 1 1 0 0 | * 24 * * * * * * | 0 0 2 0 1 2 0 0 0 0 0 0 0 | 0 1 2 0 0 2 2 1 0 0 0 0 0 0 0 | 1 0 1 2 1 0 0 1 0 0 1 | * * 24 * * * * * | 0 0 0 2 0 2 1 0 0 0 0 0 0 | 0 0 0 2 1 2 1 2 0 0 0 0 0 0 0 | 0 1 2 1 1 0 0 0 1 1 0 | * * * 6 * * * * | 0 0 0 0 4 0 0 4 0 0 0 0 0 | 0 0 4 0 0 0 8 0 4 0 0 0 0 0 0 | 1 0 0 4 4 1 0 0 1 0 1 | * * * * 24 * * * | 0 0 0 0 0 2 0 1 2 0 0 0 0 | 0 0 0 0 0 1 2 2 2 1 0 0 0 0 0 | 0 0 1 1 2 1 0 0 0 2 0 | * * * * * 12 * * | 0 0 0 0 1 0 0 0 0 2 2 0 0 | 0 0 2 0 0 0 2 0 0 0 1 2 1 0 0 | 1 0 0 2 1 0 1 0 0 1 1 | * * * * * * 24 * | 0 0 0 0 0 0 0 1 0 0 2 2 0 | 0 0 0 0 0 0 2 0 2 0 0 1 2 1 0 | 0 0 0 1 2 1 1 0 0 0 2 | * * * * * * * 12 | 0 0 0 0 0 0 1 0 2 0 0 2 2 | 0 0 0 2 0 0 0 2 2 2 0 0 1 2 1 | 0 1 2 0 1 2 1 ---------+------------------------+------------------------------------+------------------------------------+--------------- 4 0 0 0 | 4 0 0 0 0 0 0 0 | 6 * * * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 3 0 0 0 | 3 0 0 0 0 0 0 0 | * 8 * * * * * * * * * * * | 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 0 2 1 0 0 | 1 2 0 0 0 0 0 0 | * * 24 * * * * * * * * * * | 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 | 1 0 1 1 0 0 0 2 0 0 1 | 1 0 2 0 0 0 0 0 | * * * 24 * * * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 1 2 2 0 | 0 2 0 2 0 1 0 0 | * * * * 12 * * * * * * * * | 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 | 1 0 0 2 1 0 0 1 1 0 1 | 0 1 1 0 1 0 0 0 | * * * * * 48 * * * * * * * | 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 | 0 0 1 1 1 0 0 1 0 0 2 | 0 0 2 0 0 0 0 1 | * * * * * * 12 * * * * * * | 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 | 0 1 2 0 1 0 0 0 1 1 1 | 0 0 0 1 1 0 1 0 | * * * * * * * 24 * * * * * | 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 | 0 0 0 1 2 1 0 0 1 0 2 | 0 0 0 0 2 0 0 1 | * * * * * * * * 24 * * * * | 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | 0 0 1 0 1 1 0 0 0 3 0 | 0 0 0 0 0 3 0 0 | * * * * * * * * * 8 * * * | 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 | 1 0 0 1 0 0 1 0 0 2 1 | 0 0 0 0 0 1 2 0 | * * * * * * * * * * 24 * * | 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 | 0 0 0 1 1 0 1 0 0 1 2 | 0 0 0 0 0 0 2 1 | * * * * * * * * * * * 24 * | 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 | 0 0 0 0 1 1 1 0 0 0 4 | 0 0 0 0 0 0 0 4 | * * * * * * * * * * * * 6 | 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 | 0 1 1 0 0 1 1 ---------+------------------------+------------------------------------+------------------------------------+--------------- 12 0 0 0 | 24 0 0 0 0 0 0 0 | 6 8 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 co 4 1 0 0 | 4 4 0 0 0 0 0 0 | 1 0 4 0 0 0 0 0 0 0 0 0 0 | * 6 * * * * * * * * * * * * * | 1 0 1 0 0 0 0 squippy 3 3 3 0 | 3 6 0 3 0 3 0 0 | 0 1 3 0 3 0 0 0 0 1 0 0 0 | * * 8 * * * * * * * * * * * * | 1 0 0 1 0 0 0 teddi 4 0 0 4 | 4 0 8 0 0 0 0 4 | 1 0 0 4 0 0 4 0 0 0 0 0 0 | * * * 6 * * * * * * * * * * * | 0 1 1 0 0 0 0 squap 3 0 0 1 | 3 0 3 0 0 0 0 0 | 0 1 0 3 0 0 0 0 0 0 0 0 0 | * * * * 8 * * * * * * * * * * | 0 1 0 1 0 0 0 tet 2 1 0 1 | 1 2 2 0 1 0 0 0 | 0 0 1 1 0 2 0 0 0 0 0 0 0 | * * * * * 24 * * * * * * * * * | 0 0 1 1 0 0 0 tet 1 2 2 1 | 0 2 1 2 2 1 2 0 | 0 0 0 0 1 2 0 2 0 0 1 0 0 | * * * * * * 24 * * * * * * * * | 0 0 0 1 1 0 0 peppy 1 1 0 2 | 0 1 2 0 2 0 0 1 | 0 0 0 0 0 2 1 0 1 0 0 0 0 | * * * * * * * 24 * * * * * * * | 0 0 1 0 1 0 0 tet 0 1 1 2 | 0 0 0 1 2 0 2 1 | 0 0 0 0 0 0 0 2 1 0 0 1 0 | * * * * * * * * 24 * * * * * * | 0 0 0 0 1 1 0 tet 0 1 0 4 | 0 0 0 0 4 0 0 4 | 0 0 0 0 0 0 0 0 4 0 0 0 1 | * * * * * * * * * 6 * * * * * | 0 0 1 0 0 1 0 squippy 0 0 6 0 | 0 0 0 0 0 12 0 0 | 0 0 0 0 0 0 0 0 0 8 0 0 0 | * * * * * * * * * * 1 * * * * | 1 0 0 0 0 0 1 oct 0 0 3 1 | 0 0 0 0 0 3 3 0 | 0 0 0 0 0 0 0 0 0 1 3 0 0 | * * * * * * * * * * * 8 * * * | 0 0 0 1 0 0 1 tet 0 0 2 2 | 0 0 0 0 0 1 4 1 | 0 0 0 0 0 0 0 0 0 0 2 2 0 | * * * * * * * * * * * * 12 * * | 0 0 0 0 1 0 1 tet 0 0 1 4 | 0 0 0 0 0 0 4 4 | 0 0 0 0 0 0 0 0 0 0 0 4 1 | * * * * * * * * * * * * * 6 * | 0 0 0 0 0 1 1 squippy 0 0 0 8 | 0 0 0 0 0 0 0 12 | 0 0 0 0 0 0 0 0 0 0 0 0 6 | * * * * * * * * * * * * * * 1 | 0 1 0 0 0 0 1 cube ---------+------------------------+------------------------------------+------------------------------------+--------------- 12 6 6 0 | 24 24 0 6 0 12 0 0 | 6 8 24 0 12 0 0 0 0 8 0 0 0 | 1 6 8 0 0 0 0 0 0 0 1 0 0 0 0 | 1 * * * * * * octu 12 0 0 8 | 24 0 24 0 0 0 0 12 | 6 8 0 24 0 0 12 0 0 0 0 0 6 | 1 0 0 6 8 0 0 0 0 0 0 0 0 0 1 | * 1 * * * * * cubaco 4 1 0 4 | 4 4 8 0 4 0 0 4 | 1 0 4 4 0 8 4 0 4 0 0 0 1 | 0 1 0 1 0 4 0 4 0 1 0 0 0 0 0 | * * 6 * * * * squappy 3 3 3 1 | 3 6 3 3 3 3 3 0 | 0 1 3 3 3 6 0 3 0 1 3 0 0 | 0 0 1 0 1 3 3 0 0 0 0 1 0 0 0 | * * * 8 * * * teddipy 1 2 2 2 | 0 2 2 2 4 1 4 1 | 0 0 0 0 1 4 1 4 2 0 2 2 0 | 0 0 0 0 0 0 2 2 2 0 0 0 1 0 0 | * * * * 12 * * peppypy 0 1 1 4 | 0 0 0 1 4 0 4 4 | 0 0 0 0 0 0 0 4 4 0 0 4 1 | 0 0 0 0 0 0 0 0 4 1 0 0 0 1 0 | * * * * * 6 * squasc 0 0 6 8 | 0 0 0 0 0 12 24 12 | 0 0 0 0 0 0 0 0 0 8 24 24 6 | 0 0 0 0 0 0 0 0 0 0 1 8 12 6 1 | * * * * * * 1 octacube
© 2004-2024 | top of page |