Acronym | ..., oct || perp oct |
Name |
(degenerate) oct atop fully orthogonal oct, octahedron disphenoid |
Circumradius | ∞ i.e. flat in euclidean space |
Dual | selfdual |
Face vector | 12, 60, 160, 242, 204, 88, 16 |
Confer |
|
It either can be thought of as a degenerate 7D segmentotope with zero height, or as a 6D euclidean decomposition. In fact it amounts into a fold of gee, which is its hull, plus the 2 completely orthogonal decompositions thereof into 8 octetes each.
Incidence matrix according to Dynkin symbol
xo3oo4oo ox3oo4oo&#x → height = 0
(oct || perp oct)
o.3o.4o. o.3o.4o. & | 12 | 4 6 | 4 36 | 1 32 48 | 7 80 | 16 32 | 12
-----------------------+----+-------+--------+----------+--------+-------+---
x. .. .. .. .. .. & | 2 | 24 * ♦ 2 6 | 1 12 12 | 6 32 | 13 16 | 10
oo3oo4oo oo3oo4oo&#x | 2 | * 36 ♦ 0 8 | 0 8 16 | 2 32 | 8 16 | 8
-----------------------+----+-------+--------+----------+--------+-------+---
x.3o. .. .. .. .. & | 3 | 3 0 | 16 * ♦ 1 6 0 | 6 12 | 12 8 | 9
xo .. .. .. .. ..&#x & | 3 | 1 2 | * 144 ♦ 0 2 4 | 1 12 | 5 8 | 6
-----------------------+----+-------+--------+----------+--------+-------+---
x.3o.4o. .. .. .. & ♦ 6 | 12 0 | 8 0 | 2 * * ♦ 6 0 | 12 0 | 8
xo3oo .. .. .. ..&#x & ♦ 4 | 3 3 | 1 3 | * 96 * ♦ 1 4 | 4 4 | 5
xo .. .. ox .. ..&#x ♦ 4 | 2 4 | 0 4 | * * 144 ♦ 0 4 | 2 4 | 4
-----------------------+----+-------+--------+----------+--------+-------+---
xo3oo4oo .. .. ..&#x & ♦ 7 | 12 6 | 8 12 | 1 8 0 | 12 * | 4 0 | 4
xo3oo .. ox .. ..&#x & ♦ 5 | 4 6 | 1 9 | 0 2 3 | * 192 | 1 2 | 3
-----------------------+----+-------+--------+----------+--------+-------+---
xo3oo4oo ox .. ..&#x & ♦ 8 | 13 12 | 8 30 | 1 16 12 | 2 8 | 24 * | 2
xo3oo .. ox3oo ..&#x ♦ 6 | 6 9 | 2 18 | 0 6 9 | 0 6 | * 64 | 2
-----------------------+----+-------+--------+----------+--------+-------+---
xo3oo4oo ox3oo ..&#x & ♦ 9 | 15 18 | 9 54 | 1 30 36 | 3 36 | 3 8 | 16
oo3xo3oo oo3ox3oo∓#x → height = 0
(oct || perp oct)
o.3o.3o. o.3o.3o. & | 12 | 4 6 | 2 2 36 | 1 16 16 48 | 7 40 40 | 16 8 16 8 | 6 6
-----------------------+----+-------+---------+-------------+----------+-------------+----
.. x. .. .. .. .. & | 2 | 24 * ♦ 1 1 6 | 1 6 6 12 | 6 16 16 | 13 4 8 4 | 5 5
oo3oo3oo oo3oo3oo&#x | 2 | * 36 ♦ 0 0 8 | 0 4 4 16 | 2 16 16 | 8 4 8 4 | 4 4
-----------------------+----+-------+---------+-------------+----------+-------------+----
o.3x. .. .. .. .. & | 3 | 3 0 | 8 * * ♦ 1 6 0 0 | 6 12 0 | 12 4 4 0 | 5 4
.. x.3o. .. .. .. & | 3 | 3 0 | * 8 * ♦ 1 0 6 0 | 6 0 12 | 12 0 4 4 | 4 5
.. xo .. .. .. ..&#x & | 3 | 1 2 | * * 144 ♦ 0 1 1 4 | 1 6 6 | 5 2 4 2 | 3 3
-----------------------+----+-------+---------+-------------+----------+-------------+----
o.3x.3o. .. .. .. & ♦ 6 | 12 0 | 4 4 0 | 2 * * * ♦ 6 0 0 | 12 0 0 0 | 4 4
oo3xo .. .. .. ..&#x & ♦ 4 | 3 3 | 1 0 3 | * 48 * * ♦ 1 4 0 | 4 2 2 0 | 3 2
.. xo3oo .. .. ..&#x & ♦ 4 | 3 3 | 0 1 3 | * * 48 * ♦ 1 0 4 | 4 0 2 2 | 2 3
.. xo .. .. ox ..&#x ♦ 4 | 2 4 | 0 0 4 | * * * 144 ♦ 0 2 2 | 2 1 2 1 | 2 2
-----------------------+----+-------+---------+-------------+----------+-------------+----
oo3xo3oo .. .. ..&#x & ♦ 7 | 12 6 | 4 4 12 | 1 4 4 0 | 12 * * | 4 0 0 0 | 2 2
oo3xo .. .. ox ..&#x & ♦ 5 | 4 6 | 1 0 9 | 0 2 0 3 | * 96 * | 1 1 1 0 | 2 1
.. xo3oo .. ox ..&#x & ♦ 5 | 4 6 | 0 1 9 | 0 0 2 3 | * * 96 | 1 0 1 1 | 1 2
-----------------------+----+-------+---------+-------------+----------+-------------+----
oo3xo3oo .. ox ..&#x & ♦ 8 | 13 12 | 4 4 30 | 1 8 8 12 | 2 4 4 | 24 * * * | 1 1
oo3xo .. oo3ox ..&#x ♦ 6 | 6 9 | 2 0 18 | 0 6 0 9 | 0 6 0 | * 16 * * | 2 0
oo3xo .. .. ox3oo&#x & ♦ 6 | 6 9 | 1 1 18 | 0 3 3 9 | 0 3 3 | * * 32 * | 1 1
.. xo3oo .. ox3oo&#x ♦ 6 | 6 9 | 0 2 18 | 0 0 6 9 | 0 0 6 | * * * 16 | 0 2
-----------------------+----+-------+---------+-------------+----------+-------------+----
oo3xo3oo oo3ox ..&#x & ♦ 9 | 15 18 | 5 4 54 | 1 18 12 36 | 3 24 12 | 3 4 4 0 | 8 *
oo3xo3oo .. ox3oo&#x & ♦ 9 | 15 18 | 4 5 54 | 1 12 18 36 | 3 12 24 | 3 0 4 4 | * 8
© 2004-2024 | top of page |