Acronym | ... |
Name | hyperbolic o4x4o3*a4x4o3*a tetracomb |
Circumradius | 1/sqrt(-8) = 0.353553 i |
Vertex figure | tuta |
This hypercompact hyperbolic tetracomb uses hisquat in the sense of an infinite bollohedron and squat in the sense of an infinite horohedron as cell. Further o3o3o4x4*b and x4o3o4x4*b get being used as infinite bollochora.
Incidence matrix according to Dynkin symbol
o4x4o3*a4x4o3*a (N,M,K,L,P,Q,R,S → ∞) . . . . . | 8NMKLPQRS ♦ 12 12 | 12 12 6 24 6 | 4 12 4 4 4 12 12 | 4 1 4 1 6 ----------------+-----------+-----------------------+--------------------------------------------------------+-----------------------------------------------------------------------+---------------------------------------- . x . . . | 2 | 48NMKLPQRS * | 2 0 1 2 0 | 2 2 1 0 0 2 1 | 2 1 1 0 1 . . . x . | 2 | * 48NMKLPQRS | 0 2 0 2 1 | 0 2 0 1 2 1 2 | 1 0 2 1 1 ----------------+-----------+-----------------------+--------------------------------------------------------+-----------------------------------------------------------------------+---------------------------------------- o4x . . . | 4 | 4 0 | 24NMKLPQRS * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 o . . *a4x . | 4 | 0 4 | * 24NMKLPQRS * * * | 0 1 0 1 1 0 0 | 1 0 1 1 0 . x4o . . | 4 | 4 0 | * * 12NMKLPQRS * * | 2 0 0 0 0 2 0 | 2 1 0 0 1 . x . x . | 4 | 2 2 | * * * 48NMKLPQRS * | 0 1 0 0 0 1 1 | 1 0 1 0 1 . . . x4o | 4 | 0 4 | * * * * 12NMKLPQRS | 0 0 0 0 2 0 2 | 0 0 2 1 1 ----------------+-----------+-----------------------+--------------------------------------------------------+-----------------------------------------------------------------------+---------------------------------------- o4x4o3*a . . ♦ 4M | 12M 0 | 3M 0 3M 0 0 | 8NKLPQRS * * * * * * | 1 1 0 0 0 o4x . *a4x . ♦ 4K | 4K 4K | K K 0 2K 0 | * 24NMLPQRS * * * * * | 1 0 1 0 0 o4x . . o3*a ♦ 8 | 12 0 | 6 0 0 0 0 | * * 4NMKLPQRS * * * * | 0 1 1 0 0 o . o3*a4x . ♦ 8 | 0 12 | 0 6 0 0 0 | * * * 4NMKLPQRS * * * | 1 0 0 1 0 o . . *a4x4o3*a ♦ 4L | 0 12L | 0 3L 0 0 3L | * * * * 8NMKPQRS * * | 0 0 1 1 0 . x4o x . ♦ 8 | 8 4 | 0 0 2 4 0 | * * * * * 12NMKLPQRS * | 1 0 0 0 1 . x . x4o ♦ 8 | 4 8 | 0 0 0 4 2 | * * * * * * 12NMKLPQRS | 0 0 1 0 1 ----------------+-----------+-----------------------+--------------------------------------------------------+-----------------------------------------------------------------------+---------------------------------------- o4x4o3*a4x . ♦ 8MKP | 24MKP 12MKP | 6MKP 6MKP 6MKP 12MKP 0 | 2KP 6MP 0 MKP 0 3MKP 0 | 4NLQRS * * * * o4x4o3*a . o3*a ♦ 2MQ | 12MQ 0 | 6MQ 0 3MQ 0 0 | 2Q 0 MQ 0 0 0 0 | * 4NKLPRS * * * o4x . *a4x4o3*a ♦ 8KLR | 12KLR 24KLR | 6KLR 6KLR 0 12KLR 6KLR | 0 6LR KLR 0 2KR 0 3KLR | * * 4NMPQS * * o . o3*a4x4o3*a ♦ 2LS | 0 12LS | 0 6LS 0 0 3LS | 0 0 0 LS 2S 0 0 | * * * 4NMKPQR * . x4o x4o ♦ 16 | 16 16 | 0 0 4 16 4 | 0 0 0 0 0 4 4 | * * * * 3NMKLPQRS snubbed forms: o4s4o3*a4s4o3*a
or (N,M,K,L,P → ∞) . . . . . | 8NMKLP ♦ 24 | 24 12 24 | 8 12 8 24 | 8 2 6 ------------------+--------+---------+-------------------------+------------------------------+---------------- . x . . . & | 2 | 96NMKLP | 2 1 2 | 2 2 1 3 | 3 1 1 ------------------+--------+---------+-------------------------+------------------------------+---------------- o4x . . . & | 4 | 4 | 48NMKLP * * | 1 1 1 0 | 2 1 0 . x4o . . & | 4 | 4 | * 24NMKLP * | 2 0 0 2 | 2 1 1 . x . x . | 4 | 4 | * * 48NMKLP | 0 1 0 2 | 2 0 1 ------------------+--------+---------+-------------------------+------------------------------+---------------- o4x4o3*a . . & ♦ 4M | 12M | 3M 3M 0 | 16NKLP * * * | 1 1 0 o4x . *a4x . ♦ 4K | 8K | 2K 0 2K | * 24NMLP * * | 2 0 0 o4x . . o3*a & ♦ 8 | 12 | 6 0 0 | * * 8NMKLP * | 1 1 0 . x4o x . & ♦ 8 | 12 | 0 2 4 | * * * 24NMKLP | 1 0 1 ------------------+--------+---------+-------------------------+------------------------------+---------------- o4x4o3*a4x . & ♦ 8MKL | 36MKL | 12MKL 6MKL 12MKL | 2KL 6ML MKL 3MKL | 8NP * * o4x4o3*a . o3*a & ♦ 2MP | 12MP | 6MP 3MP 0 | 2P 0 MP 0 | * 8NKL * . x4o x4o ♦ 16 | 32 | 0 8 16 | 0 0 0 8 | * * 3NMKLP
© 2004-2025 | top of page |