Acronym | ditetsquat (old: dittitecat) |
Name |
hyperbolic order 3 tritetragonal tiling, hyperbolic ditrigonary triangle-square tiling, hyperbolic ditrigonary tritetragonal tiling, hyperbolic alternated octagonal tiling |
© | |
Circumradius | sqrt[-3 sqrt(2)/8] = 0.728238 i |
Vertex figure | [(3,4)3] |
Confer |
|
External links |
This tiling allows for a consistent 4-coloring of the triangles. This then could give rise for a series of partial Stott contractions, each reducing one set of triangles piecewise into points.
Incidence matrix according to Dynkin symbol
x3o3o4*a (N → ∞) . . . | 4N | 6 | 3 3 ---------+----+-----+------ x . . | 2 | 12N | 1 1 ---------+----+-----+------ x3o . | 3 | 3 | 4N * x . o4*a | 4 | 4 | * 3N
o3o8s (N → ∞) demi( . . . ) | 4N | 6 | 3 3 --------------+----+-----+------ sefa( . o8s ) | 2 | 12N | 1 1 --------------+----+-----+------ . o8s ♦ 4 | 4 | 3N * sefa( o3o8s ) | 3 | 3 | * 4N starting figure: o3o8x
s4s8o (N → ∞) demi( . . . ) | 4N | 4 2 | 2 1 3 --------------+----+-------+-------- sefa( s4s . ) | 2 | 8N * | 1 0 1 sefa( . s8o ) | 2 | * 4N | 0 1 1 --------------+----+-------+-------- s4s . ♦ 4 | 4 0 | 2N * * . s8o ♦ 4 | 0 4 | * N * sefa( s4s8o ) | 3 | 2 1 | * * 4N starting figure: x4x8o
s4s4s4*a (N → ∞) demi( . . . ) | 4N | 2 2 2 | 1 1 1 3 -----------------+----+----------+--------- sefa( s4s . ) | 2 | 4N * * | 1 0 0 1 sefa( s . s4*a ) | 2 | * 4N * | 0 1 0 1 sefa( . s4s ) | 2 | * * 4N | 0 0 1 1 -----------------+----+----------+--------- s4s . ♦ 4 | 4 0 0 | N * * * s . s4*a ♦ 4 | 0 4 0 | * N * * . s4s ♦ 4 | 0 0 4 | * * N * sefa( s4s4s4*a ) | 3 | 1 1 1 | * * * 4N starting figure: x4x4x4*a
acc. to 4-coloring of triangles: y,b,s,g (N → ∞) 2N * * * | 1 1 0 1 1 0 1 1 0 0 0 0 | 1 1 1 0 1 1 0 1 0 0 ybs [(3,4)^3] * 2N * * | 1 0 1 1 0 1 0 0 0 1 1 0 | 1 1 0 1 1 0 1 0 1 0 ybg [(3,4)^3] * * 2N * | 0 1 1 0 0 0 1 0 1 1 0 1 | 1 0 1 1 0 1 1 0 0 1 ysg [(3,4)^3] * * * 2N | 0 0 0 0 1 1 0 1 1 0 1 1 | 0 1 1 1 0 0 0 1 1 1 bsg [(3,4)^3] ------------+-------------------------------------+------------------------ 1 1 0 0 | 2N * * * * * * * * * * * | 1 0 0 0 1 0 0 0 0 0 y:b:sg 1 0 1 0 | * 2N * * * * * * * * * * | 1 0 0 0 0 1 0 0 0 0 y:s:bg 0 1 1 0 | * * 2N * * * * * * * * * | 1 0 0 0 0 0 1 0 0 0 y:g:bs 1 1 0 0 | * * * 2N * * * * * * * * | 0 1 0 0 1 0 0 0 0 0 b:y:sg 1 0 0 1 | * * * * 2N * * * * * * * | 0 1 0 0 0 0 0 1 0 0 b:s:yg 0 1 0 1 | * * * * * 2N * * * * * * | 0 1 0 0 0 0 0 0 1 0 b:g:ys 1 0 1 0 | * * * * * * 2N * * * * * | 0 0 1 0 0 1 0 0 0 0 s:y:bg 1 0 0 1 | * * * * * * * 2N * * * * | 0 0 1 0 0 0 0 1 0 0 s:b:yg 0 0 1 1 | * * * * * * * * 2N * * * | 0 0 1 0 0 0 0 0 0 1 s:g:yb 0 1 1 0 | * * * * * * * * * 2N * * | 0 0 0 1 0 0 1 0 0 0 g:y:bs 0 1 0 1 | * * * * * * * * * * 2N * | 0 0 0 1 0 0 0 0 1 0 g:b:ys 0 0 1 1 | * * * * * * * * * * * 2N | 0 0 0 1 0 0 0 0 0 1 g:s:yb ------------+-------------------------------------+------------------------ 1 1 1 0 | 1 1 1 0 0 0 0 0 0 0 0 0 | 2N * * * * * * * * * y {3} 1 1 0 1 | 0 0 0 1 1 1 0 0 0 0 0 0 | * 2N * * * * * * * * b {3} 1 0 1 1 | 0 0 0 0 0 0 1 1 1 0 0 0 | * * 2N * * * * * * * s {3} 0 1 1 1 | 0 0 0 0 0 0 0 0 0 1 1 1 | * * * 2N * * * * * * g {3} 2 2 0 0 | 2 0 0 2 0 0 0 0 0 0 0 0 | * * * * N * * * * * yb {4} 2 0 2 0 | 0 2 0 0 0 0 2 0 0 0 0 0 | * * * * * N * * * * ys {4} 0 2 2 0 | 0 0 2 0 0 0 0 0 0 2 0 0 | * * * * * * N * * * yg {4} 2 0 0 2 | 0 0 0 0 2 0 0 2 0 0 0 0 | * * * * * * * N * * bs {4} 0 2 0 2 | 0 0 0 0 0 2 0 0 0 0 2 0 | * * * * * * * * N * bg {4} 0 0 2 2 | 0 0 0 0 0 0 0 0 2 0 0 2 | * * * * * * * * * N sg {4}
© 2004-2025 | top of page |