Acronym n-puf Name n-gonal pucofastegium,n-gon - 2n-prismatic wedge,n-gonal magnabicupolaic ring,{n} || 2n-prism,{2n} || n-cupola Segmentochoron display Circumradius sqrt[(2 cos2(π/n)-2 cos(π/n)-3)/(6 cos2(π/n)-2)] Lace cityin approx. ASCII-art ``` x-n-o x-n-x x-n-x ``` Dihedral angles (at margins) at {n} between n-cu and n-cu: arccos[(2 sin2(π/n) - 1)/(4 sin2(π/n) - 1)] ... Confer general polytopal classes: segmentochora Especially squippyp (n=2)*   {3} || hip (n=3)   {4} || op (n=4)   {5} || dip (n=5)

* The case n=2 equally would be considerable here by concept, it just has a different incidence matrix as the n-gons become degenerate.

"Puco" in the naming, based to the acronym, was chosen by Bowers as inverted usage, i.e. as spoonerism to "cupo" in cupolae, cf. n-cuf.

Incidence matrix according to Dynkin symbol

```xxx-n-oxx&#x   → height(1,2) = height(1,3) = sqrt[4 - 1/sin2(π/n)]/2
height(2,3) = 1

o..-n-o..    | n  *  * | 2  2  2 0 0  0 0 0 | 1 2 1 2 1  2 0 0 0 0 | 1 1 2 1 0
.o.-n-.o.    | * 2n  * | 0  1  0 1 1  1 0 0 | 0 1 1 0 0  1 1 1 1 0 | 1 0 1 1 1
..o-n-..o    | *  * 2n | 0  0  1 0 0  1 1 1 | 0 0 0 1 1  1 0 1 1 1 | 0 1 1 1 1
-------------+---------+--------------------+----------------------+----------
x..   ...    | 2  0  0 | n  *  * * *  * * * | 1 1 0 1 0  0 0 0 0 0 | 1 1 1 0 0
oo.-n-oo.&#x | 1  1  0 | * 2n  * * *  * * * | 0 1 1 0 0  1 0 0 0 0 | 1 0 1 1 0
o.o-n-o.o&#x | 1  0  1 | *  * 2n * *  * * * | 0 0 0 1 1  1 0 0 0 0 | 0 1 1 1 0
.x.   ...    | 0  2  0 | *  *  * n *  * * * | 0 1 0 0 0  0 1 1 0 0 | 1 0 1 0 1
...   .x.    | 0  2  0 | *  *  * * n  * * * | 0 0 1 0 0  0 1 0 1 0 | 1 0 0 1 1
.oo-n-.oo&#x | 0  1  1 | *  *  * * * 2n * * | 0 0 0 0 0  1 0 1 1 0 | 0 0 1 1 1
..x   ...    | 0  0  2 | *  *  * * *  * n * | 0 0 0 1 0  0 0 1 0 1 | 0 1 1 0 1
...   ..x    | 0  0  2 | *  *  * * *  * * n | 0 0 0 0 1  0 0 0 1 1 | 0 1 0 1 1
-------------+---------+--------------------+----------------------+----------
x..-n-o..    | n  0  0 | n  0  0 0 0  0 0 0 | 1 * * * *  * * * * * | 1 1 0 0 0
xx.   ...&#x | 2  2  0 | 1  2  0 1 0  0 0 0 | * n * * *  * * * * * | 1 0 1 0 0
...   ox.&#x | 1  2  0 | 0  2  0 0 1  0 0 0 | * * n * *  * * * * * | 1 0 0 1 0
x.x   ...&#x | 2  0  2 | 1  0  2 0 0  0 1 0 | * * * n *  * * * * * | 0 1 1 0 0
...   o.x&#x | 1  0  2 | 0  0  2 0 0  0 0 1 | * * * * n  * * * * * | 0 1 0 1 0
ooo-n-ooo&#x | 1  1  1 | 0  1  1 0 0  1 0 0 | * * * * * 2n * * * * | 0 0 1 1 0
.x.-n-.x.    | 0 2n  0 | 0  0  0 n n  0 0 0 | * * * * *  * 1 * * * | 1 0 0 0 1
.xx   ...&#x | 0  2  2 | 0  0  0 1 0  2 1 0 | * * * * *  * * n * * | 0 0 1 0 1
...   .xx&#x | 0  2  2 | 0  0  0 0 1  2 0 1 | * * * * *  * * * n * | 0 0 0 1 1
..x-n-..x    | 0  0 2n | 0  0  0 0 0  0 n n | * * * * *  * * * * 1 | 0 1 0 0 1
-------------+---------+--------------------+----------------------+----------
xx.-n-ox.&#x ♦ n 2n  0 | n 2n  0 n n  0 0 0 | 1 n n 0 0  0 1 0 0 0 | 1 * * * *
x.x-n-o.x&#x ♦ n  0 2n | n  0 2n 0 0  0 n n | 1 0 0 n n  0 0 0 0 1 | * 1 * * *
xxx   ...&#x ♦ 2  2  2 | 1  2  2 1 0  2 1 0 | 0 1 0 1 0  2 0 1 0 0 | * * n * *
...   oxx&#x ♦ 1  2  2 | 0  2  2 0 1  2 0 1 | 0 0 1 0 1  2 0 0 1 0 | * * * n *
.xx-n-.xx&#x ♦ 0 2n 2n | 0  0  0 n n 2n n n | 0 0 0 0 0  0 1 n n 1 | * * * * 1
```

```{n} || 2n-p   (2 ≤ n < 5.104299)   → height = sqrt[3 - 1/sin2(π/n)]/2

n  * | 2  4  0  0  0 | 1  4  2  2 0 0 0 | 2 2 1 0
* 4n | 0  1  1  1  1 | 0  1  1  1 1 1 1 | 1 1 1 1
-------+---------------+------------------+--------
2  0 | n  *  *  *  * | 1  2  0  0 0 0 0 | 2 1 0 0
1  1 | * 4n  *  *  * | 0  1  1  1 0 0 0 | 1 1 1 0
0  2 | *  * 2n  *  * | 0  1  0  0 1 1 0 | 1 1 0 1
0  2 | *  *  * 2n  * | 0  0  1  0 1 0 1 | 1 0 1 1
0  2 | *  *  *  * 2n | 0  0  0  1 0 1 1 | 0 1 1 1
-------+---------------+------------------+--------
n  0 | n  0  0  0  0 | 1  *  *  * * * * | 2 0 0 0
2  2 | 1  2  1  0  0 | * 2n  *  * * * * | 1 1 0 0
1  2 | 0  2  0  1  0 | *  * 2n  * * * * | 1 0 1 0
1  2 | 0  2  0  0  1 | *  *  * 2n * * * | 0 1 1 0
0 2n | 0  0  n  n  0 | *  *  *  * 2 * * | 1 0 0 1
0  4 | 0  0  2  0  2 | *  *  *  * * n * | 0 1 0 1
0  4 | 0  0  0  2  2 | *  *  *  * * * n | 0 0 1 1
-------+---------------+------------------+--------
♦ n 2n | n 2n  n  n  0 | 1  n  n  0 1 0 0 | 2 * * *
♦ 2  4 | 1  4  2  0  2 | 0  2  0  2 0 1 0 | * n * *
♦ 1  4 | 0  4  0  2  2 | 0  0  2  2 0 0 1 | * * n *
♦ 0 4n | 0  0 2n 2n 2n | 0  0  0  0 2 n n | * * * 1
```

```{2n} || n-cu   → height = sqrt[3 - 3/(4 sqrt2(π/n))]/2

2n *  * | 1 1  1  1 0  0 0 0 | 1 1 1 1 1  1 0 0 0 0 | 1 1 1 1 0
* n  * | 0 0  2  0 2  2 0 0 | 0 2 1 0 0  2 1 2 1 0 | 1 0 2 1 1
* * 2n | 0 0  0  1 0  1 1 1 | 0 0 0 1 1  1 0 1 1 1 | 0 1 1 1 1
----------+--------------------+----------------------+----------
2 0  0 | n *  *  * *  * * * | 1 1 0 1 0  0 0 0 0 0 | 1 1 1 0 0
2 0  0 | * n  *  * *  * * * | 1 0 1 0 1  0 0 0 0 0 | 1 1 0 1 0
1 1  0 | * * 2n  * *  * * * | 0 1 1 0 0  1 0 0 0 0 | 1 0 1 1 0
1 0  1 | * *  * 2n *  * * * | 0 0 0 1 1  1 0 0 0 0 | 0 1 1 1 0
0 2  0 | * *  *  * n  * * * | 0 1 0 0 0  0 1 1 0 0 | 1 0 1 0 1
0 1  1 | * *  *  * * 2n * * | 0 0 0 0 0  1 0 1 1 0 | 0 0 1 1 1
0 0  2 | * *  *  * *  * n * | 0 0 0 1 0  0 0 1 0 1 | 0 1 1 0 1
0 0  2 | * *  *  * *  * * n | 0 0 0 0 1  0 0 0 1 1 | 0 1 0 1 1
----------+--------------------+----------------------+----------
2n 0  0 | n n  0  0 0  0 0 0 | 1 * * * *  * * * * * | 1 1 0 0 0
2 2  0 | 1 0  2  0 1  0 0 0 | * n * * *  * * * * * | 1 0 1 0 0
2 1  0 | 0 1  2  0 0  0 0 0 | * * n * *  * * * * * | 1 0 0 1 0
2 0  2 | 1 0  0  2 0  0 1 0 | * * * n *  * * * * * | 0 1 1 0 0
2 0  2 | 0 1  0  2 0  0 0 1 | * * * * n  * * * * * | 0 1 0 1 0
1 1  1 | 0 0  1  1 0  1 0 0 | * * * * * 2n * * * * | 0 0 1 1 0
0 n  0 | 0 0  0  0 n  0 0 0 | * * * * *  * 1 * * * | 1 0 0 0 1
0 2  2 | 0 0  0  0 1  2 1 0 | * * * * *  * * n * * | 0 0 1 0 1
0 1  2 | 0 0  0  0 0  2 0 1 | * * * * *  * * * n * | 0 0 0 1 1
0 0 2n | 0 0  0  0 0  0 n n | * * * * *  * * * * 1 | 0 1 0 0 1
----------+--------------------+----------------------+----------
♦ 2n n  0 | n n 2n  0 n  0 0 0 | 1 n n 0 0  0 1 0 0 0 | 1 * * * *
♦ 2n 0 2n | n n  0 2n 0  0 n n | 1 0 0 n n  0 0 0 0 1 | * 1 * * *
♦  2 2  2 | 1 0  2  2 1  2 1 0 | 0 1 0 1 0  2 0 1 0 0 | * * n * *
♦  2 1  2 | 0 1  2  2 0  2 0 1 | 0 0 1 0 1  2 0 0 1 0 | * * * n *
♦  0 n 2n | 0 0  0  0 n 2n n n | 0 0 0 0 0  0 1 n n 1 | * * * * 1
```