Acronym n-puf
Name n-gonal pucofastegium,
n-gon - 2n-prismatic wedge,
n-gonal magnabicupolaic ring,
{n} || 2n-prism,
{2n} || n-cupola
Segmentochoron display / VRML
 
Circumradius sqrt[(2 cos2(π/n)-2 cos(π/n)-3)/(6 cos2(π/n)-2)]
Lace city
in approx. ASCII-art
    x-n-o    
             
x-n-x   x-n-x
Dihedral angles
(at margins)
  • at {n} between n-cu and n-cu: arccos[(2 sin2(π/n) - 1)/(4 sin2(π/n) - 1)]
  • ...
Face vector 5n, 11n, 8n+3, 2n+3
Especially squippyp (n=2)*   {3} || hip (n=3)   {4} || op (n=4)   {5} || dip (n=5)  
Confer
general polytopal classes:
segmentochora  

* The case n=2 equally would be considerable here by concept, it just has a different incidence matrix as the n-gons become degenerate.

"Puco" in the naming, based to the acronym, was chosen by Bowers as inverted usage, i.e. as spoonerism to "cupo" in cupolae, cf. n-cuf.


Incidence matrix according to Dynkin symbol

xxx-n-oxx&#x   → height(1,2) = height(1,3) = sqrt[4 - 1/sin2(π/n)]/2
                 height(2,3) = 1

o..-n-o..    | n  *  * | 2  2  2 0 0  0 0 0 | 1 2 1 2 1  2 0 0 0 0 | 1 1 2 1 0
.o.-n-.o.    | * 2n  * | 0  1  0 1 1  1 0 0 | 0 1 1 0 0  1 1 1 1 0 | 1 0 1 1 1
..o-n-..o    | *  * 2n | 0  0  1 0 0  1 1 1 | 0 0 0 1 1  1 0 1 1 1 | 0 1 1 1 1
-------------+---------+--------------------+----------------------+----------
x..   ...    | 2  0  0 | n  *  * * *  * * * | 1 1 0 1 0  0 0 0 0 0 | 1 1 1 0 0
oo.-n-oo.&#x | 1  1  0 | * 2n  * * *  * * * | 0 1 1 0 0  1 0 0 0 0 | 1 0 1 1 0
o.o-n-o.o&#x | 1  0  1 | *  * 2n * *  * * * | 0 0 0 1 1  1 0 0 0 0 | 0 1 1 1 0
.x.   ...    | 0  2  0 | *  *  * n *  * * * | 0 1 0 0 0  0 1 1 0 0 | 1 0 1 0 1
...   .x.    | 0  2  0 | *  *  * * n  * * * | 0 0 1 0 0  0 1 0 1 0 | 1 0 0 1 1
.oo-n-.oo&#x | 0  1  1 | *  *  * * * 2n * * | 0 0 0 0 0  1 0 1 1 0 | 0 0 1 1 1
..x   ...    | 0  0  2 | *  *  * * *  * n * | 0 0 0 1 0  0 0 1 0 1 | 0 1 1 0 1
...   ..x    | 0  0  2 | *  *  * * *  * * n | 0 0 0 0 1  0 0 0 1 1 | 0 1 0 1 1
-------------+---------+--------------------+----------------------+----------
x..-n-o..    | n  0  0 | n  0  0 0 0  0 0 0 | 1 * * * *  * * * * * | 1 1 0 0 0
xx.   ...&#x | 2  2  0 | 1  2  0 1 0  0 0 0 | * n * * *  * * * * * | 1 0 1 0 0
...   ox.&#x | 1  2  0 | 0  2  0 0 1  0 0 0 | * * n * *  * * * * * | 1 0 0 1 0
x.x   ...&#x | 2  0  2 | 1  0  2 0 0  0 1 0 | * * * n *  * * * * * | 0 1 1 0 0
...   o.x&#x | 1  0  2 | 0  0  2 0 0  0 0 1 | * * * * n  * * * * * | 0 1 0 1 0
ooo-n-ooo&#x | 1  1  1 | 0  1  1 0 0  1 0 0 | * * * * * 2n * * * * | 0 0 1 1 0
.x.-n-.x.    | 0 2n  0 | 0  0  0 n n  0 0 0 | * * * * *  * 1 * * * | 1 0 0 0 1
.xx   ...&#x | 0  2  2 | 0  0  0 1 0  2 1 0 | * * * * *  * * n * * | 0 0 1 0 1
...   .xx&#x | 0  2  2 | 0  0  0 0 1  2 0 1 | * * * * *  * * * n * | 0 0 0 1 1
..x-n-..x    | 0  0 2n | 0  0  0 0 0  0 n n | * * * * *  * * * * 1 | 0 1 0 0 1
-------------+---------+--------------------+----------------------+----------
xx.-n-ox.&#x  n 2n  0 | n 2n  0 n n  0 0 0 | 1 n n 0 0  0 1 0 0 0 | 1 * * * *
x.x-n-o.x&#x  n  0 2n | n  0 2n 0 0  0 n n | 1 0 0 n n  0 0 0 0 1 | * 1 * * *
xxx   ...&#x  2  2  2 | 1  2  2 1 0  2 1 0 | 0 1 0 1 0  2 0 1 0 0 | * * n * *
...   oxx&#x  1  2  2 | 0  2  2 0 1  2 0 1 | 0 0 1 0 1  2 0 0 1 0 | * * * n *
.xx-n-.xx&#x  0 2n 2n | 0  0  0 n n 2n n n | 0 0 0 0 0  0 1 n n 1 | * * * * 1

xx-n-ox ox&#x   (2 ≤ n < 5.104299)   → height = sqrt[3 - 1/sin2(π/n)]/2
({n} || 2n-p)

o.-n-o. o.    | n  * | 2  4  0  0  0 | 1  4  2  2 0 0 0 | 2 2 1 0
.o-n-.o .o    | * 4n | 0  1  1  1  1 | 0  1  1  1 1 1 1 | 1 1 1 1
--------------+------+---------------+------------------+--------
x.   .. ..    | 2  0 | n  *  *  *  * | 1  2  0  0 0 0 0 | 2 1 0 0
oo-n-oo oo&#x | 1  1 | * 4n  *  *  * | 0  1  1  1 0 0 0 | 1 1 1 0
.x   .. ..    | 0  2 | *  * 2n  *  * | 0  1  0  0 1 1 0 | 1 1 0 1
..   .x ..    | 0  2 | *  *  * 2n  * | 0  0  1  0 1 0 1 | 1 0 1 1
..   .. .x    | 0  2 | *  *  *  * 2n | 0  0  0  1 0 1 1 | 0 1 1 1
--------------+------+---------------+------------------+--------
x.-n-o. ..    | n  0 | n  0  0  0  0 | 1  *  *  * * * * | 2 0 0 0
xx   .. ..&#x | 2  2 | 1  2  1  0  0 | * 2n  *  * * * * | 1 1 0 0
..   ox ..&#x | 1  2 | 0  2  0  1  0 | *  * 2n  * * * * | 1 0 1 0
..   .. ox&#x | 1  2 | 0  2  0  0  1 | *  *  * 2n * * * | 0 1 1 0
.x-n-.x ..    | 0 2n | 0  0  n  n  0 | *  *  *  * 2 * * | 1 0 0 1
.x   .. .x    | 0  4 | 0  0  2  0  2 | *  *  *  * * n * | 0 1 0 1
..   .x .x    | 0  4 | 0  0  0  2  2 | *  *  *  * * * n | 0 0 1 1
--------------+------+---------------+------------------+--------
xx-n-ox ..&#x  n 2n | n 2n  n  n  0 | 1  n  n  0 1 0 0 | 2 * * *
xx   .. ox&#x  2  4 | 1  4  2  0  2 | 0  2  0  2 0 1 0 | * n * *
..   ox ox&#x  1  4 | 0  4  0  2  2 | 0  0  2  2 0 0 1 | * * n *
.x-n-.x .x     0 4n | 0  0 2n 2n 2n | 0  0  0  0 2 n n | * * * 1

{2n} || n-cu   → height = sqrt[3 - 3/(4 sqrt2(π/n))]/2

  2n *  * | 1 1  1  1 0  0 0 0 | 1 1 1 1 1  1 0 0 0 0 | 1 1 1 1 0
   * n  * | 0 0  2  0 2  2 0 0 | 0 2 1 0 0  2 1 2 1 0 | 1 0 2 1 1
   * * 2n | 0 0  0  1 0  1 1 1 | 0 0 0 1 1  1 0 1 1 1 | 0 1 1 1 1
----------+--------------------+----------------------+----------
   2 0  0 | n *  *  * *  * * * | 1 1 0 1 0  0 0 0 0 0 | 1 1 1 0 0
   2 0  0 | * n  *  * *  * * * | 1 0 1 0 1  0 0 0 0 0 | 1 1 0 1 0
   1 1  0 | * * 2n  * *  * * * | 0 1 1 0 0  1 0 0 0 0 | 1 0 1 1 0
   1 0  1 | * *  * 2n *  * * * | 0 0 0 1 1  1 0 0 0 0 | 0 1 1 1 0
   0 2  0 | * *  *  * n  * * * | 0 1 0 0 0  0 1 1 0 0 | 1 0 1 0 1
   0 1  1 | * *  *  * * 2n * * | 0 0 0 0 0  1 0 1 1 0 | 0 0 1 1 1
   0 0  2 | * *  *  * *  * n * | 0 0 0 1 0  0 0 1 0 1 | 0 1 1 0 1
   0 0  2 | * *  *  * *  * * n | 0 0 0 0 1  0 0 0 1 1 | 0 1 0 1 1
----------+--------------------+----------------------+----------
  2n 0  0 | n n  0  0 0  0 0 0 | 1 * * * *  * * * * * | 1 1 0 0 0
   2 2  0 | 1 0  2  0 1  0 0 0 | * n * * *  * * * * * | 1 0 1 0 0
   2 1  0 | 0 1  2  0 0  0 0 0 | * * n * *  * * * * * | 1 0 0 1 0
   2 0  2 | 1 0  0  2 0  0 1 0 | * * * n *  * * * * * | 0 1 1 0 0
   2 0  2 | 0 1  0  2 0  0 0 1 | * * * * n  * * * * * | 0 1 0 1 0
   1 1  1 | 0 0  1  1 0  1 0 0 | * * * * * 2n * * * * | 0 0 1 1 0
   0 n  0 | 0 0  0  0 n  0 0 0 | * * * * *  * 1 * * * | 1 0 0 0 1
   0 2  2 | 0 0  0  0 1  2 1 0 | * * * * *  * * n * * | 0 0 1 0 1
   0 1  2 | 0 0  0  0 0  2 0 1 | * * * * *  * * * n * | 0 0 0 1 1
   0 0 2n | 0 0  0  0 0  0 n n | * * * * *  * * * * 1 | 0 1 0 0 1
----------+--------------------+----------------------+----------
 2n n  0 | n n 2n  0 n  0 0 0 | 1 n n 0 0  0 1 0 0 0 | 1 * * * *
 2n 0 2n | n n  0 2n 0  0 n n | 1 0 0 n n  0 0 0 0 1 | * 1 * * *
  2 2  2 | 1 0  2  2 1  2 1 0 | 0 1 0 1 0  2 0 1 0 0 | * * n * *
  2 1  2 | 0 1  2  2 0  2 0 1 | 0 0 1 0 1  2 0 0 1 0 | * * * n *
  0 n 2n | 0 0  0  0 n 2n n n | 0 0 0 0 0  0 1 n n 1 | * * * * 1

© 2004-2025
top of page