Acronym | n/d-cu | ||||||||||||||||||||||||||||||||||||||||||
Name | n/d-gonal cupola | ||||||||||||||||||||||||||||||||||||||||||
© © | |||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt[(7+4 cos(π d/n)-4 cos2(π d/n))/(12-16 cos2(π d/n))] | ||||||||||||||||||||||||||||||||||||||||||
Vertex figures | [3,4,n/d,4], [3,4,2n/d] | ||||||||||||||||||||||||||||||||||||||||||
General of army |
if d=1: is itself convex if gcd(n,d)=1: use d=1 for its general | ||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment | (is itself locally convex) | ||||||||||||||||||||||||||||||||||||||||||
Face vector | 3n, 5n, 2n+2 | ||||||||||||||||||||||||||||||||||||||||||
Especially |
| ||||||||||||||||||||||||||||||||||||||||||
Confer |
|
‡ / °: If d is even, the bottom face becomes some Grünbaum style polygon (case: ‡). Because the edges of that bottom face then coincide by pairs, that unusual face might be omitted without loss. This reduced figure (case: °) – not covered by the matrix below – is called a n/d-cuploid (a.k.a. semicupola).
*: The case n=2 fits here by concept too, it just has a different incidence matrix as the n-gons become degenerate.
**: The height formula given below shows that only 6/5 < n/d < 6 is possible. The maximal height is obtained at n/d = 2 with upright latteral triangles, the extremal values n/d = 6/5 or 6 would generate heights of zero.
The 3 non-degenerate cases in this range with d=1 are Johnson solids.
Incidence matrix according to Dynkin symbol
xx-n/d-ox&#x (6/5<n/d<6 and n/d<>2) → height = sqrt[1-1/(4 sin2(π d/n))]
({n/d} || {2n/d})
o.-n/d-o. | n * | 2 2 0 0 | 1 2 1 0
.o-n/d-.o | * 2n | 0 1 1 1 | 0 1 1 1
-------------+------+----------+--------
x. .. | 2 0 | n * * * | 1 1 0 0
oo-n/d-oo&#x | 1 1 | * 2n * * | 0 1 1 0
.x .. | 0 2 | * * n * | 0 1 0 1
.. .x | 0 2 | * * * n | 0 0 1 1
-------------+------+----------+--------
x.-n/d-o. | n 0 | n 0 0 0 | 1 * * *
xx ..&#x | 2 2 | 1 2 1 0 | * n * *
.. ox&#x | 1 2 | 0 2 0 1 | * * n *
.x-n/d-.x | 0 2n | 0 0 n n | * * * 1
so-2n/d-ox&#x (6/5<n/d<6 and n/d<>2) → height = sqrt(1-[1/4 *sin^2(π d/n)])
({n/d} || {2n/d})
demi( o.-2n/d-o. ) | n * | 2 2 0 0 | 1 1 0 2
.o-2n/d-.o | * 2n | 0 1 1 1 | 0 1 1 1
----------------------+------+----------+--------
sefa( s.-2n/d-o. ) | 2 0 | n * * * | 1 0 0 1
demi( oo-2n/d-oo&#x ) | 1 1 | * 2n * * | 0 1 0 1
demi( .. .x ) | 0 2 | * * n * | 0 0 1 1
demi( .. .x ) | 0 2 | * * * n | 0 1 1 0
----------------------+------+----------+--------
s.-2n/d-o. | n 0 | n 0 0 0 | 1 * * *
demi( .. ox&#x ) | 1 2 | 0 2 0 1 | * n * *
.o-2n/d-.x | 0 2n | 0 0 n n | * * 1 *
sefa( so-2n/d-ox&#x ) | 2 2 | 1 2 1 0 | * * * n
starting figure: xo-2n/d-ox&#x
© 2004-2024 | top of page |