Acronym | n,toe-dip |
Name | n-gon truncated-octahedron duoprism |
Circumradius | sqrt[5/2+1/(4 sin2(π/n))] |
Face vector | 24n, 60n, 50n+24, 15n+36, n+14 |
Especially | tratoe (n=3) squatoe (n=4) hatoe (n=6) otoe (n=8) stotoe (n=8/3) |
Confer |
|
Incidence matrix according to Dynkin symbol
xno x3x4o (n>2) . . . . . | 24n | 2 1 2 | 1 2 4 2 1 | 1 2 4 2 1 | 2 1 2 ----------+-----+-------------+------------------+---------------+------ x . . . . | 2 | 24n * * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . x . . | 2 | * 12n * | 0 2 0 2 0 | 1 0 4 0 1 | 2 0 2 . . . x . | 2 | * * 24n | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ----------+-----+-------------+------------------+---------------+------ xno . . . | n | n 0 0 | 24 * * * * | 1 2 0 0 0 | 2 1 0 x . x . . | 4 | 2 2 0 | * 12n * * * | 1 0 2 0 0 | 2 0 1 x . . x . | 4 | 2 0 2 | * * 24n * * | 0 1 1 1 0 | 1 1 1 . . x3x . | 6 | 0 3 3 | * * * 8n * | 0 0 2 0 1 | 1 0 2 . . . x4o | 4 | 0 0 4 | * * * * 6n | 0 0 0 2 1 | 0 1 2 ----------+-----+-------------+------------------+---------------+------ xno x . . ♦ 2n | 2n n 0 | 2 n 0 0 0 | 12 * * * * | 2 0 0 xno . x . ♦ 2n | 2n 0 n | 2 0 n 0 0 | * 24 * * * | 1 1 0 x . x3x . ♦ 12 | 6 6 6 | 0 3 3 2 0 | * * 8n * * | 1 0 1 x . . x4o ♦ 8 | 4 0 8 | 0 0 4 0 2 | * * * 6n * | 0 1 1 . . x3x4o ♦ 24 | 0 12 24 | 0 0 0 8 6 | * * * * n | 0 0 2 ----------+-----+-------------+------------------+---------------+------ xno x3x . ♦ 6n | 6n 3n 3n | 6 3n 3n n 0 | 3 3 n 0 0 | 8 * * xno . x4o ♦ 4n | 4n 0 4n | 4 0 4n 0 n | 0 4 0 n 0 | * 6 * x . x3x4o ♦ 48 | 24 24 48 | 0 12 24 16 12 | 0 0 8 6 2 | * * n
xno x3x3x (n>2) . . . . . | 24n | 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ----------+-----+-----------------+-------------------------+---------------------+-------- x . . . . | 2 | 24n * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x . . | 2 | * 12n * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x . | 2 | * * 12n * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * * 12n | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ----------+-----+-----------------+-------------------------+---------------------+-------- xno . . . | n | n 0 0 0 | 24 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . x . . | 4 | 2 2 0 0 | * 12n * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 x . . x . | 4 | 2 0 2 0 | * * 12n * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 x . . . x | 4 | 2 0 0 2 | * * * 12n * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3x . | 6 | 0 3 3 0 | * * * * 4n * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x . x | 4 | 0 2 0 2 | * * * * * 6n * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x3x | 6 | 0 0 3 3 | * * * * * * 8n | 0 0 0 0 0 2 1 | 0 0 1 2 ----------+-----+-----------------+-------------------------+---------------------+-------- xno x . . ♦ 2n | 2n n 0 0 | 2 n 0 0 0 0 0 | 12 * * * * * * | 1 1 0 0 xno . x . ♦ 2n | 2n 0 n 0 | 2 0 n 0 0 0 0 | * 12 * * * * * | 1 0 1 0 xno . . x ♦ 2n | 2n 0 0 n | 2 0 0 n 0 0 0 | * * 12 * * * * | 0 1 1 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 2 0 0 | * * * 4n * * * | 1 0 0 1 x . x . x ♦ 8 | 4 4 0 4 | 0 2 0 2 0 2 0 | * * * * 6n * * | 0 1 0 1 x . . x3x ♦ 12 | 6 0 6 6 | 0 0 3 3 0 0 2 | * * * * * 4n * | 0 0 1 1 . . x3x3x ♦ 24 | 0 12 12 12 | 0 0 0 0 4 6 4 | * * * * * * n | 0 0 0 2 ----------+-----+-----------------+-------------------------+---------------------+-------- xno x3x . ♦ 6n | 6n 3n 3n 0 | 6 3n 3n 0 n 0 0 | 3 3 0 n 0 0 0 | 4 * * * xno x . x ♦ 4n | 4n 2n 0 2n | 4 2n 0 2n 0 n 0 | 2 0 2 0 n 0 0 | * 6 * * xno . x3x ♦ 6n | 6n 0 3n 3n | 6 0 3n 3n 0 0 n | 0 3 3 0 0 n 0 | * * 4 * x . x3x3x ♦ 48 | 24 24 24 24 | 0 12 12 12 8 12 8 | 0 0 0 4 6 4 2 | * * * n
© 2004-2025 | top of page |