Acronym | n,m,p,q-quip |
Name |
n-gon - m-gon - p-gon - q-gon - tetraprism (or: -quadprism) |
Circumradius | sqrt[1/(4 sin2(π/n))+1/(4 sin2(π/m))+1/(4 sin2(π/p))+1/(4 sin2(π/q))] |
Face vector | nmpq, 4nmpq, 6nmpq+nmp+nmq+npq+mpq, 4nmpq+3nmp+3nmq+3npq+3mpq, nmpq+3nmp+3nmq+3npq+3mpq+nm+np+nq+mp+mq+pq, nmp+nmq+npq+mpq+2nm+2np+2nq+2mp+2mq+2pq, nm+np+nq+mp+mq+pq+n+m+p+q, n+m+p+q |
Especially | triquip (n=m=p=q=3) octo (n=m=p=q=4) piquip (n=m=p=q=5) hiquip (n=m=p=q=6) hequip (n=m=p=q=7) oquip (n=m=p=q=8) equip (n=m=p=q=9) diquip (n=m=p=q=10) n,n,n,n-quip (n=m=p=q) |
Confer |
|
Incidence matrix according to Dynkin symbol
xno xmo xpo xqo (n,m,p,q>2) . . . . . . . . | nmpq | 2 2 2 2 | 1 4 4 4 1 4 4 1 4 1 | 2 2 2 2 8 8 2 8 2 2 2 2 8 2 2 2 | 1 4 4 1 4 1 4 4 4 16 4 4 4 1 4 1 4 4 1 | 2 2 2 8 2 2 2 2 8 2 8 8 2 2 2 2 | 1 4 1 4 4 1 4 4 4 1 | 2 2 2 2 ----------------+------+---------------------+-----------------------------------------------+---------------------------------------------------------------------+------------------------------------------------------------------------+-----------------------------------------------------+---------------------------+-------- x . . . . . . . | 2 | nmpq * * * | 1 2 2 2 0 0 0 0 0 0 | 2 2 2 1 4 4 1 4 1 0 0 0 0 0 0 0 | 1 4 4 1 4 1 2 2 2 8 2 2 2 0 0 0 0 0 0 | 2 2 2 8 2 2 2 1 4 1 4 4 1 0 0 0 | 1 4 1 4 4 1 2 2 2 0 | 2 2 2 1 . . x . . . . . | 2 | * nmpq * * | 0 2 0 0 1 2 2 0 0 0 | 1 0 0 2 4 4 0 0 0 2 2 1 4 1 0 0 | 1 2 2 0 0 0 4 4 2 8 2 0 0 1 4 1 2 2 0 | 2 2 1 4 1 0 0 2 8 2 4 4 0 2 2 1 | 1 4 1 2 2 0 4 4 2 1 | 2 2 1 2 . . . . x . . . | 2 | * * nmpq * | 0 0 2 0 0 2 0 1 2 0 | 0 1 0 0 4 0 2 4 0 1 0 2 4 0 2 1 | 0 2 0 1 2 0 2 0 4 8 0 4 2 1 2 0 4 2 1 | 1 0 2 4 0 2 1 2 4 0 8 4 2 2 1 2 | 1 2 0 4 2 1 4 2 4 1 | 2 1 2 2 . . . . . . x . | 2 | * * * nmpq | 0 0 0 2 0 0 2 0 2 1 | 0 0 1 0 0 4 0 4 2 0 1 0 4 2 1 2 | 0 0 2 0 2 1 0 2 0 8 4 2 4 0 2 1 2 4 1 | 0 1 0 4 2 1 2 0 4 2 4 8 2 1 2 2 | 0 2 1 2 4 1 2 4 4 1 | 1 2 2 2 ----------------+------+---------------------+-----------------------------------------------+---------------------------------------------------------------------+------------------------------------------------------------------------+-----------------------------------------------------+---------------------------+-------- xno . . . . . . | n | n 0 0 0 | mpq * * * * * * * * * | 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 4 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 2 8 2 2 2 0 0 0 0 0 0 0 0 0 | 1 4 1 4 4 1 0 0 0 0 | 2 2 2 0 x . x . . . . . | 4 | 2 2 0 0 | * nmpq * * * * * * * * | 1 0 0 1 2 2 0 0 0 0 0 0 0 0 0 0 | 1 2 2 0 0 0 2 2 1 4 1 0 0 0 0 0 0 0 0 | 2 2 1 4 1 0 0 1 4 1 2 2 0 0 0 0 | 1 4 1 2 2 0 2 2 1 0 | 2 2 1 1 x . . . x . . . | 4 | 2 0 2 0 | * * nmpq * * * * * * * | 0 1 0 0 2 0 1 2 0 0 0 0 0 0 0 0 | 0 2 0 1 2 0 1 0 2 4 0 2 1 0 0 0 0 0 0 | 1 0 2 4 0 2 1 1 2 0 4 2 1 0 0 0 | 1 2 0 4 2 1 2 1 2 0 | 2 1 2 1 x . . . . . x . | 4 | 2 0 0 2 | * * * nmpq * * * * * * | 0 0 1 0 0 2 0 2 1 0 0 0 0 0 0 0 | 0 0 2 0 2 1 0 1 0 4 2 1 2 0 0 0 0 0 0 | 0 1 0 4 2 1 2 0 2 1 2 4 1 0 0 0 | 0 2 1 2 4 1 1 2 2 0 | 1 2 2 1 . . xmo . . . . | m | 0 m 0 0 | * * * * npq * * * * * | 0 0 0 2 0 0 0 0 0 2 2 0 0 0 0 0 | 1 0 0 0 0 0 4 4 0 0 0 0 0 1 4 1 0 0 0 | 2 2 0 0 0 0 0 2 8 2 0 0 0 2 2 0 | 1 4 1 0 0 0 4 4 0 1 | 2 2 0 2 . . x . x . . . | 4 | 0 2 2 0 | * * * * * nmpq * * * * | 0 0 0 0 2 0 0 0 0 1 0 1 2 0 0 0 | 0 1 0 0 0 0 2 0 2 4 0 0 0 1 2 0 2 1 0 | 1 0 1 2 0 0 0 2 4 0 4 2 0 2 1 1 | 1 2 0 2 1 0 4 2 2 1 | 2 1 1 2 . . x . . . x . | 4 | 0 2 0 2 | * * * * * * nmpq * * * | 0 0 0 0 0 2 0 0 0 0 1 0 2 1 0 0 | 0 0 1 0 0 0 0 2 0 4 2 0 0 0 2 1 1 2 0 | 0 1 0 2 1 0 0 0 4 2 2 4 0 1 2 1 | 0 2 1 1 2 0 2 4 2 1 | 1 2 1 2 . . . . xpo . . | p | 0 0 p 0 | * * * * * * * nmq * * | 0 0 0 0 0 0 2 0 0 0 0 2 0 0 2 0 | 0 0 0 1 0 0 0 0 4 0 0 4 0 1 0 0 4 0 1 | 0 0 2 0 0 2 0 2 0 0 8 0 2 2 0 2 | 1 0 0 4 0 1 4 0 4 1 | 2 0 2 2 . . . . x . x . | 4 | 0 0 2 2 | * * * * * * * * nmpq * | 0 0 0 0 0 0 0 2 0 0 0 0 2 0 1 1 | 0 0 0 0 1 0 0 0 0 4 0 2 2 0 1 0 2 2 1 | 0 0 0 2 0 1 1 0 2 0 4 4 2 1 1 2 | 0 1 0 2 2 1 2 2 4 1 | 1 1 2 2 . . . . . . xqo | q | 0 0 0 q | * * * * * * * * * nmp | 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 2 | 0 0 0 0 0 1 0 0 0 0 4 0 4 0 0 1 0 4 1 | 0 0 0 0 2 0 2 0 0 2 0 8 2 0 2 2 | 0 0 1 0 4 1 0 4 4 1 | 0 2 2 2 ----------------+------+---------------------+-----------------------------------------------+---------------------------------------------------------------------+------------------------------------------------------------------------+-----------------------------------------------------+---------------------------+-------- xno x . . . . . ♦ 2n | 2n n 0 0 | 2 n 0 0 0 0 0 0 0 0 | mpq * * * * * * * * * * * * * * * | 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 1 4 1 0 0 0 0 0 0 0 0 0 0 0 | 1 4 1 2 2 0 0 0 0 0 | 2 2 1 0 xno . . x . . . ♦ 2n | 2n 0 n 0 | 2 0 n 0 0 0 0 0 0 0 | * mpq * * * * * * * * * * * * * * | 0 2 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 0 2 4 0 2 1 0 0 0 0 0 0 0 0 0 | 1 2 0 4 2 1 0 0 0 0 | 2 1 2 0 xno . . . . x . ♦ 2n | 2n 0 0 n | 2 0 0 n 0 0 0 0 0 0 | * * mpq * * * * * * * * * * * * * | 0 0 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 0 4 2 1 2 0 0 0 0 0 0 0 0 0 | 0 2 1 2 4 1 0 0 0 0 | 1 2 2 0 x . xmo . . . . ♦ 2m | m 2m 0 0 | 0 m 0 0 2 0 0 0 0 0 | * * * npq * * * * * * * * * * * * | 1 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 | 2 2 0 0 0 0 0 1 4 1 0 0 0 0 0 0 | 1 4 1 0 0 0 2 2 0 0 | 2 2 0 1 x . x . x . . . ♦ 8 | 4 4 4 0 | 0 2 2 0 0 2 0 0 0 0 | * * * * nmpq * * * * * * * * * * * | 0 1 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 | 1 0 1 2 0 0 0 1 2 0 2 1 0 0 0 0 | 1 2 0 2 1 0 2 1 1 0 | 2 1 1 1 x . x . . . x . ♦ 8 | 4 4 0 4 | 0 2 0 2 0 0 2 0 0 0 | * * * * * nmpq * * * * * * * * * * | 0 0 1 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 | 0 1 0 2 1 0 0 0 2 1 1 2 0 0 0 0 | 0 2 1 1 2 0 1 2 1 0 | 1 2 1 1 x . . . xpo . . ♦ 2p | p 0 2p 0 | 0 0 p 0 0 0 0 2 0 0 | * * * * * * nmq * * * * * * * * * | 0 0 0 1 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 | 0 0 2 0 0 2 0 1 0 0 4 0 1 0 0 0 | 1 0 0 4 0 1 2 0 2 0 | 2 0 2 1 x . . . x . x . ♦ 8 | 4 0 4 4 | 0 0 2 2 0 0 0 0 2 0 | * * * * * * * nmpq * * * * * * * * | 0 0 0 0 1 0 0 0 0 2 0 1 1 0 0 0 0 0 0 | 0 0 0 2 0 1 1 0 1 0 2 2 1 0 0 0 | 0 1 0 2 2 1 1 1 2 0 | 1 1 2 1 x . . . . . xqo ♦ 2q | q 0 0 2q | 0 0 0 q 0 0 0 0 0 2 | * * * * * * * * nmp * * * * * * * | 0 0 0 0 0 1 0 0 0 0 2 0 2 0 0 0 0 0 0 | 0 0 0 0 2 0 2 0 0 1 0 4 1 0 0 0 | 0 0 1 0 4 1 0 2 2 0 | 0 2 2 1 . . xmo x . . . ♦ 2m | 0 2m m 0 | 0 0 0 0 2 m 0 0 0 0 | * * * * * * * * * npq * * * * * * | 0 0 0 0 0 0 2 0 0 0 0 0 0 1 2 0 0 0 0 | 1 0 0 0 0 0 0 2 4 0 0 0 0 2 1 0 | 1 2 0 0 0 0 4 2 0 1 | 2 1 0 2 . . xmo . . x . ♦ 2m | 0 2m 0 m | 0 0 0 0 2 0 m 0 0 0 | * * * * * * * * * * npq * * * * * | 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 1 0 0 0 | 0 1 0 0 0 0 0 0 4 2 0 0 0 1 2 0 | 0 2 1 0 0 0 2 4 0 1 | 1 2 0 2 . . x . xpo . . ♦ 2p | 0 p 2p 0 | 0 0 0 0 0 p 0 2 0 0 | * * * * * * * * * * * nmq * * * * | 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 2 0 0 | 0 0 1 0 0 0 0 2 0 0 4 0 0 2 0 1 | 1 0 0 2 0 0 4 0 2 1 | 2 0 1 2 . . x . x . x . ♦ 8 | 0 4 4 4 | 0 0 0 0 0 2 2 0 2 0 | * * * * * * * * * * * * nmpq * * * | 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 1 1 0 | 0 0 0 1 0 0 0 0 2 0 2 2 0 1 1 1 | 0 1 0 1 1 0 2 2 2 1 | 1 1 1 2 . . x . . . xqo ♦ 2q | 0 q 0 2q | 0 0 0 0 0 0 q 0 0 2 | * * * * * * * * * * * * * nmp * * | 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 2 0 | 0 0 0 0 1 0 0 0 0 2 0 4 0 0 2 1 | 0 0 1 0 2 0 0 4 2 1 | 0 2 1 2 . . . . xpo x . ♦ 2p | 0 0 2p p | 0 0 0 0 0 0 0 2 p 0 | * * * * * * * * * * * * * * nmq * | 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 1 | 0 0 0 0 0 1 0 0 0 0 4 0 2 1 0 2 | 0 0 0 2 0 1 2 0 4 1 | 1 0 2 2 . . . . x . xqo ♦ 2q | 0 0 q 2q | 0 0 0 0 0 0 0 0 q 2 | * * * * * * * * * * * * * * * nmp | 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 1 | 0 0 0 0 0 0 1 0 0 0 0 4 2 0 1 2 | 0 0 0 0 2 1 0 2 4 1 | 0 1 2 2 ----------------+------+---------------------+-----------------------------------------------+---------------------------------------------------------------------+------------------------------------------------------------------------+-----------------------------------------------------+---------------------------+-------- xno xmo . . . . ♦ nm | nm nm 0 0 | m nm 0 0 n 0 0 0 0 0 | m 0 0 n 0 0 0 0 0 0 0 0 0 0 0 0 | pq * * * * * * * * * * * * * * * * * * | 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 4 1 0 0 0 0 0 0 0 | 2 2 0 0 xno x . x . . . ♦ 4n | 4n 2n 2n 0 | 4 2n 2n 0 0 n 0 0 0 0 | 2 2 0 0 n 0 0 0 0 0 0 0 0 0 0 0 | * mpq * * * * * * * * * * * * * * * * * | 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 0 2 1 0 0 0 0 0 | 2 1 1 0 xno x . . . x . ♦ 4n | 4n 2n 0 2n | 4 2n 0 2n 0 0 n 0 0 0 | 2 0 2 0 0 n 0 0 0 0 0 0 0 0 0 0 | * * mpq * * * * * * * * * * * * * * * * | 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 | 0 2 1 1 2 0 0 0 0 0 | 1 2 1 0 xno . . xpo . . ♦ np | np 0 np 0 | p 0 np 0 0 0 0 n 0 0 | 0 p 0 0 0 0 n 0 0 0 0 0 0 0 0 0 | * * * mq * * * * * * * * * * * * * * * | 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 | 1 0 0 4 0 1 0 0 0 0 | 2 0 2 0 xno . . x . x . ♦ 4n | 4n 0 2n 2n | 4 0 2n 2n 0 0 0 0 n 0 | 0 2 2 0 0 0 0 n 0 0 0 0 0 0 0 0 | * * * * mpq * * * * * * * * * * * * * * | 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 | 0 1 0 2 2 1 0 0 0 0 | 1 1 2 0 xno . . . . xqo ♦ nq | nq 0 0 nq | q 0 0 nq 0 0 0 0 0 q | 0 0 q 0 0 0 0 0 n 0 0 0 0 0 0 0 | * * * * * mp * * * * * * * * * * * * * | 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 | 0 0 1 0 4 1 0 0 0 0 | 0 2 2 0 x . xmo x . . . ♦ 4m | 2m 4m 2m 0 | 0 2m m 0 4 2m 0 0 0 0 | 0 0 0 2 m 0 0 0 0 2 0 0 0 0 0 0 | * * * * * * npq * * * * * * * * * * * * | 1 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 | 1 2 0 0 0 0 2 1 0 0 | 2 1 0 1 x . xmo . . x . ♦ 4m | 2m 4m 0 2m | 0 2m 0 m 4 0 2m 0 0 0 | 0 0 0 2 0 m 0 0 0 0 2 0 0 0 0 0 | * * * * * * * npq * * * * * * * * * * * | 0 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 | 0 2 1 0 0 0 1 2 0 0 | 1 2 0 1 x . x . xpo . . ♦ 4p | 2p 2p 4p 0 | 0 p 2p 0 0 2p 0 4 0 0 | 0 0 0 0 p 0 2 0 0 0 0 2 0 0 0 0 | * * * * * * * * nmq * * * * * * * * * * | 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 | 1 0 0 2 0 0 2 0 1 0 | 2 0 1 1 x . x . x . x . ♦ 16 | 8 8 8 8 | 0 4 4 4 0 4 4 0 4 0 | 0 0 0 0 2 2 0 2 0 0 0 0 2 0 0 0 | * * * * * * * * * nmpq * * * * * * * * * | 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 | 0 1 0 1 1 0 1 1 1 0 | 1 1 1 1 x . x . . . xqo ♦ 4q | 2q 2q 0 4q | 0 q 0 2q 0 0 2q 0 0 4 | 0 0 0 0 0 q 0 0 2 0 0 0 0 2 0 0 | * * * * * * * * * * nmp * * * * * * * * | 0 0 0 0 1 0 0 0 0 1 0 2 0 0 0 0 | 0 0 1 0 2 0 0 2 1 0 | 0 2 1 1 x . . . xpo x . ♦ 4p | 2p 0 4p 2p | 0 0 2p p 0 0 0 4 2p 0 | 0 0 0 0 0 0 2 p 0 0 0 0 0 0 2 0 | * * * * * * * * * * * nmq * * * * * * * | 0 0 0 0 0 1 0 0 0 0 2 0 1 0 0 0 | 0 0 0 2 0 1 1 0 2 0 | 1 0 2 1 x . . . x . xqo ♦ 4q | 2q 0 2q 4q | 0 0 q 2q 0 0 0 0 2q 4 | 0 0 0 0 0 0 0 q 2 0 0 0 0 0 0 2 | * * * * * * * * * * * * nmp * * * * * * | 0 0 0 0 0 0 1 0 0 0 0 2 1 0 0 0 | 0 0 0 0 2 1 0 1 2 0 | 0 1 2 1 . . xmo xpo . . ♦ mp | 0 mp mp 0 | 0 0 0 0 p mp 0 m 0 0 | 0 0 0 0 0 0 0 0 0 p 0 m 0 0 0 0 | * * * * * * * * * * * * * nq * * * * * | 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 | 1 0 0 0 0 0 4 0 0 1 | 2 0 0 2 . . xmo x . x . ♦ 4m | 0 4m 2m 2m | 0 0 0 0 4 2m 2m 0 m 0 | 0 0 0 0 0 0 0 0 0 2 2 0 m 0 0 0 | * * * * * * * * * * * * * * npq * * * * | 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 0 | 0 1 0 0 0 0 2 2 0 1 | 1 1 0 2 . . xmo . . xqo ♦ mq | 0 mq 0 mq | 0 0 0 0 q 0 mq 0 0 m | 0 0 0 0 0 0 0 0 0 0 q 0 0 m 0 0 | * * * * * * * * * * * * * * * np * * * | 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 | 0 0 1 0 0 0 0 4 0 1 | 0 2 0 2 . . x . xpo x . ♦ 4p | 0 2p 4p 2p | 0 0 0 0 0 2p p 4 2p 0 | 0 0 0 0 0 0 0 0 0 0 0 2 p 0 2 0 | * * * * * * * * * * * * * * * * nmq * * | 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 | 0 0 0 1 0 0 2 0 2 1 | 1 0 1 2 . . x . x . xqo ♦ 4q | 0 2q 2q 4q | 0 0 0 0 0 q 2q 0 2q 4 | 0 0 0 0 0 0 0 0 0 0 0 0 q 2 0 2 | * * * * * * * * * * * * * * * * * nmp * | 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 | 0 0 0 0 1 0 0 2 2 1 | 0 1 1 2 . . . . xpo xqo ♦ pq | 0 0 pq pq | 0 0 0 0 0 0 0 q pq p | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 q p | * * * * * * * * * * * * * * * * * * nm | 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 | 0 0 0 0 0 1 0 0 4 1 | 0 0 2 2 ----------------+------+---------------------+-----------------------------------------------+---------------------------------------------------------------------+------------------------------------------------------------------------+-----------------------------------------------------+---------------------------+-------- xno xmo x . . . ♦ 2nm | 2nm 2nm nm 0 | 2m 2nm nm 0 2n nm 0 0 0 0 | 2m m 0 2n nm 0 0 0 0 n 0 0 0 0 0 0 | 2 m 0 0 0 0 n 0 0 0 0 0 0 0 0 0 0 0 0 | pq * * * * * * * * * * * * * * * | 1 2 0 0 0 0 0 0 0 0 | 2 1 0 0 xno xmo . . x . ♦ 2nm | 2nm 2nm 0 nm | 2m 2nm 0 nm 2n 0 nm 0 0 0 | 2m 0 m 2n 0 nm 0 0 0 0 n 0 0 0 0 0 | 2 0 m 0 0 0 0 n 0 0 0 0 0 0 0 0 0 0 0 | * pq * * * * * * * * * * * * * * | 0 2 1 0 0 0 0 0 0 0 | 1 2 0 0 xno x . xpo . . ♦ 2np | 2np np 2np 0 | 2p p 2np 0 0 np 0 2n 0 0 | p 2p 0 0 np 0 2n 0 0 0 0 n 0 0 0 0 | 0 p 0 2 0 0 0 0 n 0 0 0 0 0 0 0 0 0 0 | * * mq * * * * * * * * * * * * * | 1 0 0 2 0 0 0 0 0 0 | 2 0 1 0 xno x . x . x . ♦ 8n | 8n 4n 4n 4n | 8 4n 4n 4n 0 2n 2n 0 2n 0 | 4 4 4 0 2n 2n 0 2n 0 0 0 0 n 0 0 0 | 0 2 2 0 2 0 0 0 0 n 0 0 0 0 0 0 0 0 0 | * * * mpq * * * * * * * * * * * * | 0 1 0 1 1 0 0 0 0 0 | 1 1 1 0 xno x . . . xqo ♦ 2nq | 2nq nq 0 2nq | 2q nq 0 2nq 0 0 nq 0 0 2n | q 0 2q 0 0 nq 0 0 2n 0 0 0 0 n 0 0 | 0 0 q 0 0 2 0 0 0 0 n 0 0 0 0 0 0 0 0 | * * * * mp * * * * * * * * * * * | 0 0 1 0 2 0 0 0 0 0 | 0 2 1 0 xno . . xpo x . ♦ 2np | 2np 0 2np np | 2p 0 2np np 0 0 0 2n np 0 | 0 2p p 0 0 0 2n np 0 0 0 0 0 0 n 0 | 0 0 0 2 p 0 0 0 0 0 0 n 0 0 0 0 0 0 0 | * * * * * mq * * * * * * * * * * | 0 0 0 2 0 1 0 0 0 0 | 1 0 2 0 xno . . x . xqo ♦ 2nq | 2nq 0 nq 2nq | 2q 0 nq 2nq 0 0 0 0 nq 2n | 0 q 2q 0 0 0 0 nq 2n 0 0 0 0 0 0 n | 0 0 0 0 q 2 0 0 0 0 0 0 n 0 0 0 0 0 0 | * * * * * * mp * * * * * * * * * | 0 0 0 0 2 1 0 0 0 0 | 0 1 2 0 x . xmo xpo . . ♦ 2mp | mp 2mp 2mp 0 | 0 mp mp 0 2p 2mp 0 2m 0 0 | 0 0 0 p mp 0 m 0 0 2p 0 2m 0 0 0 0 | 0 0 0 0 0 0 p 0 m 0 0 0 0 2 0 0 0 0 0 | * * * * * * * nq * * * * * * * * | 1 0 0 0 0 0 2 0 0 0 | 2 0 0 1 x . xmo x . x . ♦ 8m | 4m 8m 4m 4m | 0 4m 2m 2m 8 4m 4m 0 2m 0 | 0 0 0 4 2m 2m 0 m 0 4 4 0 2m 0 0 0 | 0 0 0 0 0 0 2 2 0 m 0 0 0 0 2 0 0 0 0 | * * * * * * * * npq * * * * * * * | 0 1 0 0 0 0 1 1 0 0 | 1 1 0 1 x . xmo . . xqo ♦ 2mq | mq 2mq 0 2mq | 0 mq 0 mq 2q 0 2mq 0 0 2m | 0 0 0 q 0 mq 0 0 m 0 2q 0 0 2m 0 0 | 0 0 0 0 0 0 0 q 0 0 m 0 0 0 0 2 0 0 0 | * * * * * * * * * np * * * * * * | 0 0 1 0 0 0 0 2 0 0 | 0 2 0 1 x . x . xpo x . ♦ 8p | 4p 4p 8p 4p | 0 2p 4p 2p 0 4p 2p 8 4p 0 | 0 0 0 0 2p p 4 2p 0 0 0 4 2p 0 4 0 | 0 0 0 0 0 0 0 0 2 p 0 2 0 0 0 0 2 0 0 | * * * * * * * * * * nmq * * * * * | 0 0 0 1 0 0 1 0 1 0 | 1 0 1 1 x . x . x . xqo ♦ 8q | 4q 4q 4q 8q | 0 2q 2q 4q 0 2q 4q 0 4q 8 | 0 0 0 0 q 2q 0 2q 4 0 0 0 2q 4 0 4 | 0 0 0 0 0 0 0 0 0 q 2 0 2 0 0 0 0 2 0 | * * * * * * * * * * * nmp * * * * | 0 0 0 0 1 0 0 1 1 0 | 0 1 1 1 x . . . xpo xqo ♦ 2pq | pq 0 2pq 2pq | 0 0 pq pq 0 0 0 2q 2pq 2p | 0 0 0 0 0 0 q pq p 0 0 0 0 0 2q 2p | 0 0 0 0 0 0 0 0 0 0 0 q p 0 0 0 0 0 2 | * * * * * * * * * * * * nm * * * | 0 0 0 0 0 1 0 0 2 0 | 0 0 2 1 . . xmo xpo x . ♦ 2mp | 0 2mp 2mp mp | 0 0 0 0 2p 2mp mp 2m mp 0 | 0 0 0 0 0 0 0 0 0 2p p 2m mp 0 m 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 2 p 0 m 0 0 | * * * * * * * * * * * * * nq * * | 0 0 0 0 0 0 2 0 0 1 | 1 0 0 2 . . xmo x . xqo ♦ 2mq | 0 2mq mq 2mq | 0 0 0 0 2q mq 2mq 0 mq 2m | 0 0 0 0 0 0 0 0 0 q 2q 0 mq 2m 0 m | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 q 2 0 m 0 | * * * * * * * * * * * * * * np * | 0 0 0 0 0 0 0 2 0 1 | 0 1 0 2 . . x . xpo xqo ♦ 2pq | 0 pq 2pq 2pq | 0 0 0 0 0 pq pq 2q 2pq 2p | 0 0 0 0 0 0 0 0 0 0 0 q pq p 2q 2p | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 q p 2 | * * * * * * * * * * * * * * * nm | 0 0 0 0 0 0 0 0 2 1 | 0 0 1 2 ----------------+------+---------------------+-----------------------------------------------+---------------------------------------------------------------------+------------------------------------------------------------------------+-----------------------------------------------------+---------------------------+-------- xno xmo xpo . . ♦ nmp | nmp nmp nmp 0 | mp nmp nmp 0 np nmp 0 nm 0 0 | mp mp 0 np nmp 0 nm 0 0 np 0 nm 0 0 0 0 | p mp 0 m 0 0 np 0 nm 0 0 0 0 n 0 0 0 0 0 | p 0 m 0 0 0 0 n 0 0 0 0 0 0 0 0 | q * * * * * * * * * | 2 0 0 0 xno xmo x . x . ♦ 4nm | 4nm 4nm 2nm 2nm | 4m 4nm 2nm 2nm 4n 2nm 2nm 0 nm 0 | 4m 2m 2m 4n 2nm 2nm 0 nm 0 2n 2n 0 nm 0 0 0 | 4 2m 2m 0 m 0 2n 2n 0 nm 0 0 0 0 n 0 0 0 0 | 2 2 0 m 0 0 0 0 n 0 0 0 0 0 0 0 | * pq * * * * * * * * | 1 1 0 0 xno xmo . . xqo ♦ nmq | nmq nmq 0 nmq | mq nmq 0 nmq nq 0 nmq 0 0 nm | mq 0 mq nq 0 nmq 0 0 nm 0 nq 0 0 nm 0 0 | q 0 mq 0 0 m 0 nq 0 0 nm 0 0 0 0 n 0 0 0 | 0 q 0 0 m 0 0 0 0 n 0 0 0 0 0 0 | * * p * * * * * * * | 0 2 0 0 xno x . xpo x . ♦ 4np | 4np 2np 4np 2np | 4p 2np 4np 2np 0 2np np 4n 2np 0 | 2p 4p 2p 0 2np np 4n 2np 0 0 0 2n np 0 2n 0 | 0 2p p 4 2p 0 0 0 2n np 0 2n 0 0 0 0 n 0 0 | 0 0 2 p 0 2 0 0 0 0 n 0 0 0 0 0 | * * * mq * * * * * * | 1 0 1 0 xno x . x . xqo ♦ 4nq | 4nq 2nq 2nq 4nq | 4q 2nq 2nq 4nq 0 nq 2nq 0 2nq 4n | 2q 2q 4q 0 nq 2nq 0 2nq 4n 0 0 0 nq 2n 0 2n | 0 q 2q 0 2q 4 0 0 0 nq 2n 0 2n 0 0 0 0 n 0 | 0 0 0 q 2 0 2 0 0 0 0 n 0 0 0 0 | * * * * mp * * * * * | 0 1 1 0 xno . . xpo xqo ♦ npq | npq 0 npq npq | pq 0 npq npq 0 0 0 nq npq np | 0 pq pq 0 0 0 nq npq np 0 0 0 0 0 nq np | 0 0 0 q pq p 0 0 0 0 0 nq np 0 0 0 0 0 n | 0 0 0 0 0 q p 0 0 0 0 0 n 0 0 0 | * * * * * m * * * * | 0 0 2 0 x . xmo xpo x . ♦ 4mp | 2mp 4mp 4mp 2mp | 0 2mp 2mp mp 4p 4mp 2mp 4m 2mp 0 | 0 0 0 2p 2mp mp 2m mp 0 4p 2p 4m 2mp 0 2m 0 | 0 0 0 0 0 0 2p p 2m mp 0 m 0 4 2p 0 2m 0 0 | 0 0 0 0 0 0 0 2 p 0 m 0 0 2 0 0 | * * * * * * nq * * * | 1 0 0 1 x . xmo x . xqo ♦ 4mq | 2mq 4mq 2mq 4mq | 0 2mq mq 2mq 4q 2mq 4mq 0 2mq 4m | 0 0 0 2q mq 2mq 0 mq 2m 2q 4q 0 2mq 4m 0 2m | 0 0 0 0 0 0 q 2q 0 mq 2m 0 m 0 2q 4 0 2m 0 | 0 0 0 0 0 0 0 0 q 2 0 m 0 0 2 0 | * * * * * * * np * * | 0 1 0 1 x . x . xpo xqo ♦ 4pq | 2pq 2pq 4pq 4pq | 0 pq 2pq 2pq 0 2pq 2pq 4q 4pq 4p | 0 0 0 0 pq pq 2q 2pq 2p 0 0 2q 2pq 2p 4q 4p | 0 0 0 0 0 0 0 0 q pq p 2q 2p 0 0 0 2q 2p 4 | 0 0 0 0 0 0 0 0 0 0 q p 2 0 0 2 | * * * * * * * * nm * | 0 0 1 1 . . xmo xpo xqo ♦ mpq | 0 mpq mpq mpq | 0 0 0 0 pq mpq mpq mq mpq mp | 0 0 0 0 0 0 0 0 0 pq pq mq mpq mp mq mp | 0 0 0 0 0 0 0 0 0 0 0 0 0 q pq p mq mp m | 0 0 0 0 0 0 0 0 0 0 0 0 0 q p m | * * * * * * * * * n | 0 0 0 2 ----------------+------+---------------------+-----------------------------------------------+---------------------------------------------------------------------+------------------------------------------------------------------------+-----------------------------------------------------+---------------------------+-------- xno xmo xpo x . ♦ 2nmp | 2nmp 2nmp 2nmp nmp | 2mp 2nmp 2nmp nmp 2np 2nmp nmp 2nm nmp 0 | 2mp 2mp mp 2np 2nmp nmp 2nm nmp 0 2np np 2nm nmp 0 nm 0 | 2p 2mp mp 2m mp 0 2np np 2nm nmp 0 nm 0 2n np 0 nm 0 0 | 2p p 2m mp 0 m 0 2n np 0 nm 0 0 n 0 0 | 2 p 0 m 0 0 n 0 0 0 | q * * * xno xmo x . xqo ♦ 2nmq | 2nmq 2nmq nmq 2nmq | 2mq 2nmq nmq 2nmq 2nq nmq 2nmq 0 nmq 2nm | 2mq mq 2mq 2nq nmq 2nmq 0 nmq 2nm nq 2nq 0 nmq 2nm 0 nm | 2q mq 2mq 0 mq 2m nq 2nq 0 nmq 2nm 0 nm 0 nq 2n 0 nm 0 | q 2q 0 mq 2m 0 m 0 nq 2n 0 nm 0 0 n 0 | 0 q 2 0 m 0 0 n 0 0 | * p * * xno x . xpo xqo ♦ 2npq | 2npq npq 2npq 2npq | 2pq npq 2npq 2npq 0 npq npq 2nq 2npq 2np | pq 2pq 2pq 0 npq npq 2nq 2npq 2np 0 0 nq npq np 2nq 2np | 0 pq pq 2q 2pq 2p 0 0 nq npq np 2nq 2np 0 0 0 nq np 2n | 0 0 q pq p 2q 2p 0 0 0 nq np 2n 0 0 n | 0 0 0 q p 2 0 0 n 0 | * * m * x . xmo xpo xqo ♦ 2mpq | mpq 2mpq 2mpq 2mpq | 0 mpq mpq mpq 2pq 2mpq 2mpq 2mq 2mpq 2mp | 0 0 0 pq mpq mpq mq mpq mp 2pq 2pq 2mq 2mpq 2mp 2mq 2mp | 0 0 0 0 0 0 pq pq mq mpq mp mq mp 2q 2pq 2p 2mq 2mp 2m | 0 0 0 0 0 0 0 q pq p mq mp m 2q 2p 2m | 0 0 0 0 0 0 q p m 2 | * * * n
© 2004-2025 | top of page |