Acronym n,ike-dippip
Name n-gon - icosahedron duoprismatic prism
Face vector 24n, 96n, 142n+24, 92n+72, 23n+70, n+22
Especially trikep (n=3)   cubike (n=4)  
Confer
general polytopal classes:
Wythoffian polypeta  

Incidence matrix according to Dynkin symbol

x xno x3o5o   (n>2)

. . . . . . | 24n |   1   2   5 |   2   5  1  10   5 |  1  10   5  5  10  1 |  5  10 1  5  2 |  5 2 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x . . . . . |   2 | 12n   *   * |   2   5  0   0   0 |  1  10   5  0   0  0 |  5  10 1  0  0 |  5 2 0
. x . . . . |   2 |   * 24n   * |   1   0  1   5   0 |  1   5   0  5   5  0 |  5   5 0  5  1 |  5 1 1
. . . x . . |   2 |   *   * 60n |   0   1  0   2   2 |  0   2   2  1   4  1 |  1   4 1  2  2 |  2 2 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x x . . . . |   4 |   2   2   0 | 12n   *  *   *   * |  1   5   0  0   0  0 |  5   5 0  0  0 |  5 1 0
x . . x . . |   4 |   2   0   2 |   * 30n  *   *   * |  0   2   2  0   0  0 |  1   4 1  0  0 |  2 2 0
. xno . . . |   n |   0   n   0 |   *   * 24   *   * |  1   0   0  5   0  0 |  5   0 0  5  0 |  5 0 1
. x . x . . |   4 |   0   2   2 |   *   *  * 60n   * |  0   1   0  1   2  0 |  1   2 0  2  1 |  2 1 1
. . . x3o . |   3 |   0   0   3 |   *   *  *   * 40n |  0   0   1  0   2  1 |  0   2 1  1  2 |  1 2 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x xno . . .   2n |   n  2n   0 |   n   0  2   0   0 | 12   *   *  *   *  * |  5   0 0  0  0 |  5 0 0
x x . x . .    8 |   4   4   4 |   2   2  0   2   0 |  * 30n   *  *   *  * |  1   2 0  0  0 |  2 1 0
x . . x3o .    6 |   3   0   6 |   0   3  0   0   2 |  *   * 20n  *   *  * |  0   2 1  0  0 |  1 2 0
. xno x . .   2n |   0  2n   n |   0   0  2   n   0 |  *   *   * 60   *  * |  1   0 0  2  0 |  2 0 1
. x . x3o .    6 |   0   3   6 |   0   0  0   3   2 |  *   *   *  * 40n  * |  0   1 0  1  1 |  1 1 1
. . . x3o5o   12 |   0   0  30 |   0   0  0   0  20 |  *   *   *  *   * 2n |  0   0 1  0  2 |  0 2 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x xno x . .   4n |  2n  4n  2n |  2n   n  4  2n   0 |  2   n   0  2   0  0 | 30   * *  *  * |  2 0 0
x x . x3o .   12 |   6   6  12 |   3   6  0   6   4 |  0   3   2  0   2  0 |  * 20n *  *  * |  1 1 0
x . . x3o5o   24 |  12   0  60 |   0  30  0   0  40 |  0   0  20  0   0  2 |  *   * n  *  * |  0 2 0
. xno x3o .   3n |   0  3n  3n |   0   0  3  3n   n |  0   0   0  3   n  0 |  *   * * 40  * |  1 0 1
. x . x3o5o   24 |   0  12  60 |   0   0  0  30  40 |  0   0   0  0  20  2 |  *   * *  * 2n |  0 1 1
------------+-----+-------------+--------------------+----------------------+----------------+-------
x xno x3o .   6n |  3n  6n  6n |  3n  3n  6  6n  2n |  3  3n   n  6  2n  0 |  3   n 0  2  0 | 20 * *
x x . x3o5o   48 |  24  24 120 |  12  60  0  60  80 |  0  30  40  0  40  4 |  0  20 2  0  2 |  * n *
. xno x3o5o  12n |   0 12n 30n |   0   0 12 30n 20n |  0   0   0 30 20n  n |  0   0 0 20  n |  * * 2

© 2004-2025
top of page