Acronym | n,ico-dip |
Name | n-gon - icositetrachoron duoprism |
Face vector | 24n, 120n, 192n+24, 120n+96, 25n+96, n+24 |
Especially | trico (n=3) squico (n=4) |
Confer |
|
Incidence matrix according to Dynkin symbol
xno x3o4o3o (n>2) . . . . . . | 24n | 2 8 | 1 16 12 | 8 24 6 | 12 12 1 | 6 2 ------------+-----+---------+------------+------------+----------+----- x . . . . . | 2 | 24n * | 1 8 0 | 8 12 0 | 12 6 0 | 6 1 . . x . . . | 2 | * 96n | 0 2 3 | 1 6 3 | 3 6 1 | 3 2 ------------+-----+---------+------------+------------+----------+----- xno . . . . | n | n 0 | 24 * * ♦ 8 0 0 | 12 0 0 | 6 0 x . x . . . | 4 | 2 2 | * 96n * | 1 3 0 | 3 3 0 | 3 1 . . x3o . . | 3 | 0 3 | * * 96n | 0 2 2 | 1 4 1 | 2 2 ------------+-----+---------+------------+------------+----------+----- xno x . . . ♦ 2n | 2n n | 2 n 0 | 96 * * | 3 0 0 | 3 0 x . x3o . . ♦ 6 | 3 6 | 0 3 2 | * 96n * | 1 2 0 | 2 1 . . x3o4o . ♦ 6 | 0 12 | 0 0 8 | * * 24n | 0 2 1 | 1 2 ------------+-----+---------+------------+------------+----------+----- xno x3o . . ♦ 3n | 3n 3n | 3 3n n | 3 n 0 | 96 * * | 2 0 x . x3o4o . ♦ 12 | 6 24 | 0 12 16 | 0 8 2 | * 24n * | 1 1 . . x3o4o3o ♦ 24 | 0 96 | 0 0 96 | 0 0 24 | * * n | 0 2 ------------+-----+---------+------------+------------+----------+----- xno x3o4o . ♦ 6n | 6n 12n | 6 12n 8n | 12 8n n | 8 n 0 | 24 * x . x3o4o3o ♦ 48 | 24 192 | 0 96 192 | 0 96 48 | 0 24 2 | * n
xno o3x3o4o (n>2) . . . . . . | 24n | 2 8 | 1 16 4 8 | 8 8 16 4 2 | 4 8 8 4 1 | 4 2 2 ------------+-----+---------+----------------+-------------------+----------------+------- x . . . . . | 2 | 24n * | 1 8 0 0 | 8 4 8 0 0 | 4 8 4 2 0 | 4 2 1 . . . x . . | 2 | * 96n | 0 2 1 2 | 1 2 4 2 1 | 1 2 4 2 1 | 2 1 2 ------------+-----+---------+----------------+-------------------+----------------+------- xno . . . . | n | n 0 | 24 * * * ♦ 8 0 0 0 0 | 4 8 0 0 0 | 4 2 0 x . . x . . | 4 | 2 2 | * 96n * * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . o3x . . | 3 | 0 3 | * * 32n * | 0 2 0 2 0 | 1 0 4 0 1 | 2 0 2 . . . x3o . | 3 | 0 3 | * * * 64n | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ------------+-----+---------+----------------+-------------------+----------------+------- xno . x . . ♦ 2n | 2n n | 2 n 0 0 | 96 * * * * | 1 2 0 0 0 | 2 1 0 x . o3x . . ♦ 6 | 3 6 | 0 3 2 0 | * 32n * * * | 1 0 2 0 0 | 2 0 1 x . . x3o . ♦ 6 | 3 6 | 0 3 0 2 | * * 64n * * | 0 1 1 1 0 | 1 1 1 . . o3x3o . ♦ 6 | 0 12 | 0 0 4 4 | * * * 16n * | 0 0 2 0 1 | 1 0 2 . . . x3o4o ♦ 6 | 0 12 | 0 0 0 8 | * * * * 8n | 0 0 0 2 1 | 0 1 2 ------------+-----+---------+----------------+-------------------+----------------+------- xno o3x . . ♦ 3n | 3n 3n | 3 3n n 0 | 3 n 0 0 0 | 32 * * * * | 2 0 0 xno . x3o . ♦ 3n | 3n 3n | 3 3n 0 n | 3 0 n 0 0 | * 64 * * * | 1 1 0 x . o3x3o . ♦ 12 | 6 24 | 0 12 8 8 | 0 4 4 2 0 | * * 16n * * | 1 0 1 x . . x3o4o ♦ 12 | 6 24 | 0 12 0 16 | 0 0 8 0 2 | * * * 8n * | 0 1 1 . . o3x3o4o ♦ 24 | 0 96 | 0 0 32 64 | 0 0 0 16 8 | * * * * n | 0 0 2 ------------+-----+---------+----------------+-------------------+----------------+------- xno o3x3o . ♦ 6n | 6n 12n | 6 12n 4n 4n | 12 4n 4n n 0 | 4 4 n 0 0 | 16 * * xno . x3o4o ♦ 6n | 6n 12n | 6 12n 0 8n | 12 0 8n 0 n | 0 8 0 n 0 | * 8 * x . o3x3o4o ♦ 48 | 24 192 | 0 96 64 128 | 0 32 64 32 16 | 0 0 16 8 2 | * * n
xno o3x3o *d3o (n>2) . . . . . . | 24n | 2 8 | 1 16 4 4 4 | 8 8 8 8 2 2 2 | 4 4 4 4 4 4 1 | 2 2 2 2 ---------------+-----+---------+--------------------+-------------------------+---------------------+-------- x . . . . . | 2 | 24n * | 1 8 0 0 0 | 8 4 4 4 0 0 0 | 4 4 4 2 2 2 0 | 2 2 2 1 . . . x . . | 2 | * 96n | 0 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ---------------+-----+---------+--------------------+-------------------------+---------------------+-------- xno . . . . | n | n 0 | 24 * * * * ♦ 8 0 0 0 0 0 0 | 4 4 4 0 0 0 0 | 2 2 2 0 x . . x . . | 4 | 2 2 | * 96n * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . o3x . . | 3 | 0 3 | * * 32n * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x3o . | 3 | 0 3 | * * * 32n * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . x . *d3o | 3 | 0 3 | * * * * 32n | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ---------------+-----+---------+--------------------+-------------------------+---------------------+-------- xno . x . . ♦ 2n | 2n n | 2 n 0 0 0 | 96 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . o3x . . ♦ 6 | 3 6 | 0 3 2 0 0 | * 32n * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 x . . x3o . ♦ 6 | 3 6 | 0 3 0 2 0 | * * 32n * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 x . . x . *d3o ♦ 6 | 3 6 | 0 3 0 0 2 | * * * 32n * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . o3x3o . ♦ 6 | 0 12 | 0 0 4 4 0 | * * * * 8n * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . o3x . *d3o ♦ 6 | 0 12 | 0 0 4 0 4 | * * * * * 8n * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x3o *d3o ♦ 6 | 0 12 | 0 0 0 4 4 | * * * * * * 8n | 0 0 0 0 0 2 1 | 0 0 1 2 ---------------+-----+---------+--------------------+-------------------------+---------------------+-------- xno o3x . . ♦ 3n | 3n 3n | 3 3n n 0 0 | 3 n 0 0 0 0 0 | 32 * * * * * * | 1 1 0 0 xno . x3o . ♦ 3n | 3n 3n | 3 3n 0 n 0 | 3 0 n 0 0 0 0 | * 32 * * * * * | 1 0 1 0 xno . x . *d3o ♦ 3n | 3n 3n | 3 3n 0 0 n | 3 0 0 n 0 0 0 | * * 32 * * * * | 0 1 1 0 x . o3x3o . ♦ 12 | 6 24 | 0 12 8 8 0 | 0 4 4 0 2 0 0 | * * * 8n * * * | 1 0 0 1 x . o3x . *d3o ♦ 12 | 6 24 | 0 12 8 0 8 | 0 4 0 4 0 2 0 | * * * * 8n * * | 0 1 0 1 x . . x3o *d3o ♦ 12 | 6 24 | 0 12 0 8 8 | 0 0 4 4 0 0 2 | * * * * * 8n * | 0 0 1 1 . . o3x3o *d3o ♦ 24 | 0 96 | 0 0 32 32 32 | 0 0 0 0 8 8 8 | * * * * * * n | 0 0 0 2 ---------------+-----+---------+--------------------+-------------------------+---------------------+-------- xno o3x3o . ♦ 6n | 6n 12n | 6 12n 4n 4n 0 | 12 4n 4n 0 n 0 0 | 4 4 0 n 0 0 0 | 8 * * * xno o3x . *d3o ♦ 6n | 6n 12n | 6 12n 4n 0 4n | 12 4n 0 4n 0 n 0 | 4 0 4 0 n 0 0 | * 8 * * xno . x3o *d3o ♦ 6n | 6n 12n | 6 12n 0 4n 4n | 12 0 4n 4n 0 0 n | 0 4 4 0 0 n 0 | * * 8 * x . o3x3o *d3o ♦ 48 | 24 192 | 0 96 64 64 64 | 0 32 32 32 16 16 16 | 0 0 0 8 8 8 2 | * * * n
© 2004-2025 | top of page |