Acronym n,ico-dip
Name n-gon - icositetrachoron duoprism
Face vector 24n, 120n, 192n+24, 120n+96, 25n+96, n+24
Especially trico (n=3)   squico (n=4)  
Confer
general polytopal classes:
Wythoffian polypeta  

Incidence matrix according to Dynkin symbol

xno x3o4o3o   (n>2)

. . . . . . | 24n |   2   8 |  1  16  12 |  8  24   6 | 12  12 1 |  6 2
------------+-----+---------+------------+------------+----------+-----
x . . . . . |   2 | 24n   * |  1   8   0 |  8  12   0 | 12   6 0 |  6 1
. . x . . . |   2 |   * 96n |  0   2   3 |  1   6   3 |  3   6 1 |  3 2
------------+-----+---------+------------+------------+----------+-----
xno . . . . |   n |   n   0 | 24   *   *   8   0   0 | 12   0 0 |  6 0
x . x . . . |   4 |   2   2 |  * 96n   * |  1   3   0 |  3   3 0 |  3 1
. . x3o . . |   3 |   0   3 |  *   * 96n |  0   2   2 |  1   4 1 |  2 2
------------+-----+---------+------------+------------+----------+-----
xno x . . .   2n |  2n   n |  2   n   0 | 96   *   * |  3   0 0 |  3 0
x . x3o . .    6 |   3   6 |  0   3   2 |  * 96n   * |  1   2 0 |  2 1
. . x3o4o .    6 |   0  12 |  0   0   8 |  *   * 24n |  0   2 1 |  1 2
------------+-----+---------+------------+------------+----------+-----
xno x3o . .   3n |  3n  3n |  3  3n   n |  3   n   0 | 96   * * |  2 0
x . x3o4o .   12 |   6  24 |  0  12  16 |  0   8   2 |  * 24n * |  1 1
. . x3o4o3o   24 |   0  96 |  0   0  96 |  0   0  24 |  *   * n |  0 2
------------+-----+---------+------------+------------+----------+-----
xno x3o4o .   6n |  6n 12n |  6 12n  8n | 12  8n   n |  8   n 0 | 24 *
x . x3o4o3o   48 |  24 192 |  0  96 192 |  0  96  48 |  0  24 2 |  * n

xno o3x3o4o   (n>2)

. . . . . . | 24n |   2   8 |  1  16   4   8 |  8   8  16   4  2 |  4  8   8  4 1 |  4 2 2
------------+-----+---------+----------------+-------------------+----------------+-------
x . . . . . |   2 | 24n   * |  1   8   0   0 |  8   4   8   0  0 |  4  8   4  2 0 |  4 2 1
. . . x . . |   2 |   * 96n |  0   2   1   2 |  1   2   4   2  1 |  1  2   4  2 1 |  2 1 2
------------+-----+---------+----------------+-------------------+----------------+-------
xno . . . . |   n |   n   0 | 24   *   *   *   8   0   0   0  0 |  4  8   0  0 0 |  4 2 0
x . . x . . |   4 |   2   2 |  * 96n   *   * |  1   1   2   0  0 |  1  2   2  1 0 |  2 1 1
. . o3x . . |   3 |   0   3 |  *   * 32n   * |  0   2   0   2  0 |  1  0   4  0 1 |  2 0 2
. . . x3o . |   3 |   0   3 |  *   *   * 64n |  0   0   2   1  1 |  0  1   2  2 1 |  1 1 2
------------+-----+---------+----------------+-------------------+----------------+-------
xno . x . .   2n |  2n   n |  2   n   0   0 | 96   *   *   *  * |  1  2   0  0 0 |  2 1 0
x . o3x . .    6 |   3   6 |  0   3   2   0 |  * 32n   *   *  * |  1  0   2  0 0 |  2 0 1
x . . x3o .    6 |   3   6 |  0   3   0   2 |  *   * 64n   *  * |  0  1   1  1 0 |  1 1 1
. . o3x3o .    6 |   0  12 |  0   0   4   4 |  *   *   * 16n  * |  0  0   2  0 1 |  1 0 2
. . . x3o4o    6 |   0  12 |  0   0   0   8 |  *   *   *   * 8n |  0  0   0  2 1 |  0 1 2
------------+-----+---------+----------------+-------------------+----------------+-------
xno o3x . .   3n |  3n  3n |  3  3n   n   0 |  3   n   0   0  0 | 32  *   *  * * |  2 0 0
xno . x3o .   3n |  3n  3n |  3  3n   0   n |  3   0   n   0  0 |  * 64   *  * * |  1 1 0
x . o3x3o .   12 |   6  24 |  0  12   8   8 |  0   4   4   2  0 |  *  * 16n  * * |  1 0 1
x . . x3o4o   12 |   6  24 |  0  12   0  16 |  0   0   8   0  2 |  *  *   * 8n * |  0 1 1
. . o3x3o4o   24 |   0  96 |  0   0  32  64 |  0   0   0  16  8 |  *  *   *  * n |  0 0 2
------------+-----+---------+----------------+-------------------+----------------+-------
xno o3x3o .   6n |  6n 12n |  6 12n  4n  4n | 12  4n  4n   n  0 |  4  4   n  0 0 | 16 * *
xno . x3o4o   6n |  6n 12n |  6 12n   0  8n | 12   0  8n   0  n |  0  8   0  n 0 |  * 8 *
x . o3x3o4o   48 |  24 192 |  0  96  64 128 |  0  32  64  32 16 |  0  0  16  8 2 |  * * n

xno o3x3o *d3o   (n>2)

. . . . .    . | 24n |   2   8 |  1  16   4   4   4 |  8   8   8   8  2  2  2 |  4  4  4  4  4  4 1 | 2 2 2 2
---------------+-----+---------+--------------------+-------------------------+---------------------+--------
x . . . .    . |   2 | 24n   * |  1   8   0   0   0 |  8   4   4   4  0  0  0 |  4  4  4  2  2  2 0 | 2 2 2 1
. . . x .    . |   2 |   * 96n |  0   2   1   1   1 |  1   2   2   2  1  1  1 |  1  1  1  2  2  2 1 | 1 1 1 2
---------------+-----+---------+--------------------+-------------------------+---------------------+--------
xno . . .    . |   n |   n   0 | 24   *   *   *   *   8   0   0   0  0  0  0 |  4  4  4  0  0  0 0 | 2 2 2 0
x . . x .    . |   4 |   2   2 |  * 96n   *   *   * |  1   1   1   1  0  0  0 |  1  1  1  1  1  1 0 | 1 1 1 1
. . o3x .    . |   3 |   0   3 |  *   * 32n   *   * |  0   2   0   0  1  1  0 |  1  0  0  2  2  0 1 | 1 1 0 2
. . . x3o    . |   3 |   0   3 |  *   *   * 32n   * |  0   0   2   0  1  0  1 |  0  1  0  2  0  2 1 | 1 0 1 2
. . . x . *d3o |   3 |   0   3 |  *   *   *   * 32n |  0   0   0   2  0  1  1 |  0  0  1  0  2  2 1 | 0 1 1 2
---------------+-----+---------+--------------------+-------------------------+---------------------+--------
xno . x .    .   2n |  2n   n |  2   n   0   0   0 | 96   *   *   *  *  *  * |  1  1  1  0  0  0 0 | 1 1 1 0
x . o3x .    .    6 |   3   6 |  0   3   2   0   0 |  * 32n   *   *  *  *  * |  1  0  0  1  1  0 0 | 1 1 0 1
x . . x3o    .    6 |   3   6 |  0   3   0   2   0 |  *   * 32n   *  *  *  * |  0  1  0  1  0  1 0 | 1 0 1 1
x . . x . *d3o    6 |   3   6 |  0   3   0   0   2 |  *   *   * 32n  *  *  * |  0  0  1  0  1  1 0 | 0 1 1 1
. . o3x3o    .    6 |   0  12 |  0   0   4   4   0 |  *   *   *   * 8n  *  * |  0  0  0  2  0  0 1 | 1 0 0 2
. . o3x . *d3o    6 |   0  12 |  0   0   4   0   4 |  *   *   *   *  * 8n  * |  0  0  0  0  2  0 1 | 0 1 0 2
. . . x3o *d3o    6 |   0  12 |  0   0   0   4   4 |  *   *   *   *  *  * 8n |  0  0  0  0  0  2 1 | 0 0 1 2
---------------+-----+---------+--------------------+-------------------------+---------------------+--------
xno o3x .    .   3n |  3n  3n |  3  3n   n   0   0 |  3   n   0   0  0  0  0 | 32  *  *  *  *  * * | 1 1 0 0
xno . x3o    .   3n |  3n  3n |  3  3n   0   n   0 |  3   0   n   0  0  0  0 |  * 32  *  *  *  * * | 1 0 1 0
xno . x . *d3o   3n |  3n  3n |  3  3n   0   0   n |  3   0   0   n  0  0  0 |  *  * 32  *  *  * * | 0 1 1 0
x . o3x3o    .   12 |   6  24 |  0  12   8   8   0 |  0   4   4   0  2  0  0 |  *  *  * 8n  *  * * | 1 0 0 1
x . o3x . *d3o   12 |   6  24 |  0  12   8   0   8 |  0   4   0   4  0  2  0 |  *  *  *  * 8n  * * | 0 1 0 1
x . . x3o *d3o   12 |   6  24 |  0  12   0   8   8 |  0   0   4   4  0  0  2 |  *  *  *  *  * 8n * | 0 0 1 1
. . o3x3o *d3o   24 |   0  96 |  0   0  32  32  32 |  0   0   0   0  8  8  8 |  *  *  *  *  *  * n | 0 0 0 2
---------------+-----+---------+--------------------+-------------------------+---------------------+--------
xno o3x3o    .   6n |  6n 12n |  6 12n  4n  4n   0 | 12  4n  4n   0  n  0  0 |  4  4  0  n  0  0 0 | 8 * * *
xno o3x . *d3o   6n |  6n 12n |  6 12n  4n   0  4n | 12  4n   0  4n  0  n  0 |  4  0  4  0  n  0 0 | * 8 * *
xno . x3o *d3o   6n |  6n 12n |  6 12n   0  4n  4n | 12   0  4n  4n  0  0  n |  0  4  4  0  0  n 0 | * * 8 *
x . o3x3o *d3o   48 |  24 192 |  0  96  64  64  64 |  0  32  32  32 16 16 16 |  0  0  0  8  8  8 2 | * * * n

© 2004-2025
top of page