| Acronym | mabirch |
| Name | medial birhombatocubic honeycomb |
| Confer |
This honeycomb is the general form of one of the 3 phases of the tegum sum of 2 inverted general srich variants, ao4ob3bo4oa&#zc, here in fact the realm of 1/sqrt(2) < b:a < 3/sqrt(2). The other ones will be sabirch for 0 < b:a < 1/sqrt(2) resp. gabirch for 3/sqrt(2) < b:a < ∞.
Further there are singular transition cases too. The relevant ones for the current realm are the bordering cases b:a = 1/sqrt(2) (rich) and b:a = 3/sqrt(2) (rebatch) respectively.
Incidence matrix according to Dynkin symbol
ao4ob3bo4oa&#zc (N → ∞) → height = 0
c = sqrt[3a2-2ab sqrt(2)+2b2]/2
1/sqrt(2) < b:a < 3/sqrt(2)
o.4o.3o.4o. & | 12N | 2 4 4 | 4 2 2 6 6 | 2 1 5 2 2
------------------+-----+-------------+-------------------+---------------
a. .. .. .. & | 2 | 12N * * | 2 0 0 2 0 | 1 0 2 1 0
.. .. b. .. & | 2 | * 24N * | 1 1 1 0 1 | 1 1 1 0 1
oo4oo3oo4oo&#c | 2 | * * 24N | 0 0 0 2 2 | 0 0 2 1 1
------------------+-----+-------------+-------------------+---------------
a. .. b. .. & | 4 | 2 2 0 | 12N * * * * | 1 0 1 0 0
.. o.3b. .. & | 3 | 0 3 0 | * 8N * * * | 0 1 0 0 1
.. .. b.4o. & | 4 | 0 4 0 | * * 6N * * | 1 1 0 0 0
ao .. .. ..&#c & | 3 | 1 0 2 | * * * 24N * | 0 0 1 1 0
.. ob .. ..&#c & | 3 | 0 1 2 | * * * * 24N | 0 0 1 0 1
------------------+-----+-------------+-------------------+---------------
a. .. b.4o. & | 8 | 4 8 0 | 4 0 2 0 0 | 3N * * * * (b,a)-4p
.. o.3b.4o. & | 12 | 0 24 0 | 0 8 6 0 0 | * N * * * b-co
ao .. bo ..&#c & | 5 | 2 2 4 | 1 0 0 2 2 | * * 12N * * (a,b,c)-squippy
ao .. .. oa&#c | 4 | 2 0 4 | 0 0 0 4 0 | * * * 6N * tetragonal disphenoid (tet variant)
.. ob3bo ..&#c | 6 | 0 6 6 | 0 2 0 0 6 | * * * * 4N (b,c)-3ap
© 2004-2025 | top of page |