Acronym | hoctaoho |
Name | hollow 2oct atop oho |
Circumradius | 1 |
Face vector | 18, 60, 52, 13 |
Confer |
|
This polychoron is just an edge-faceting of octaco.
It shall be pointed out that in the here being used reduction the x3/2x faces of the top-base 2oct cancel completely out, while their coincident pairs of triangles will get identified instead. (Therefore one might be tempted to name it rather a hollow thah atop oho instead, but then its diametral squares would have to vanish somehow mystically.)
Incidence matrix according to Dynkin symbol
reduced( xx3/2xo3ox3*a&#x by x.3/2x.3o.3*a ) → height = 1/sqrt(2) = 0.707107
(pseudo 2oct || oho)
o.3/2o.3o.3*a | 6 * | 4 4 0 0 | 2 4 4 2 0 0 0 | 2 2 2 0
.o3/2.o3.o3*a | * 12 | 0 2 2 2 | 0 2 1 2 1 2 1 | 1 2 1 1
------------------------------+------+-------------+------------------+--------
reduced( x. .. .. & ) | 2 0 | 12 * * * | 1 1 1 0 0 0 0 | 1 1 1 0
oo3/2oo3oo3*a&#x | 1 1 | * 24 * * | 0 1 1 1 0 0 0 | 1 1 1 0
.x .. .. | 0 2 | * * 12 * | 0 1 0 0 1 1 0 | 1 1 0 1
.. .. .x | 0 2 | * * * 12 | 0 0 0 1 0 1 1 | 0 1 1 1
------------------------------+------+-------------+------------------+--------
reduced( x. .. o.3*a & ) | 3 0 | 3 0 0 0 | 4 * * * * * * | 0 1 1 0
xx .. .. &#x | 2 2 | 1 2 1 0 | * 12 * * * * * | 1 1 0 0
.. xo .. &#x | 2 1 | 1 2 0 0 | * * 12 * * * * | 1 0 1 0
.. .. ox &#x | 1 2 | 0 2 0 1 | * * * 12 * * * | 0 1 1 0
.x3/2.o .. | 0 3 | 0 0 3 0 | * * * * 4 * * | 1 0 0 1
.x .. .x3*a | 0 6 | 0 0 3 3 | * * * * * 4 * | 0 1 0 1
.. .o3.x | 0 3 | 0 0 0 3 | * * * * * * 4 | 0 0 1 1
------------------------------+------+-------------+------------------+--------
reduced( xx3/2xo .. &#x ) ♦ 3 3 | 3 6 3 0 | 0 3 3 0 1 0 0 | 4 * * *
xx .. ox3*a&#x ♦ 3 6 | 3 6 3 3 | 1 3 0 3 0 1 0 | * 4 * *
.. xo3ox &#x ♦ 3 3 | 3 6 0 3 | 1 0 3 3 0 0 1 | * * 4 *
.x3/2.o3.x ♦ 0 12 | 0 0 12 12 | 0 0 0 0 4 4 4 | * * * 1
© 2004-2025 | top of page |