Acronym hagrid
Name hexagon - great-rhombicosidodecahedron duoprism
Circumradius sqrt[35+12 sqrt(5)]/2 = 3.931692
Face vector 720, 1800, 1572, 558, 68
Confer
more general:
n,grid-dip  
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

x6o x3x5x

. . . . . | 720 |   2   1   1   1 |   1   2   2   2   1   1  1 |  1  1  1   2   2  2 1 |  1  1  1 2
----------+-----+-----------------+----------------------------+-----------------------+-----------
x . . . . |   2 | 720   *   *   * |   1   1   1   1   0   0  0 |  1  1  1   1   1  1 0 |  1  1  1 1
. . x . . |   2 |   * 360   *   * |   0   2   0   0   1   1  0 |  1  0  0   2   2  0 1 |  1  1  0 2
. . . x . |   2 |   *   * 360   * |   0   0   2   0   1   0  1 |  0  1  0   2   0  2 1 |  1  0  1 2
. . . . x |   2 |   *   *   * 360 |   0   0   0   2   0   1  1 |  0  0  1   0   2  2 1 |  0  1  1 2
----------+-----+-----------------+----------------------------+-----------------------+-----------
x6o . . . |   6 |   6   0   0   0 | 120   *   *   *   *   *  * |  1  1  1   0   0  0 0 |  1  1  1 0
x . x . . |   4 |   2   2   0   0 |   * 360   *   *   *   *  * |  1  0  0   1   1  0 0 |  1  1  0 1
x . . x . |   4 |   2   0   2   0 |   *   * 360   *   *   *  * |  0  1  0   1   0  1 0 |  1  0  1 1
x . . . x |   4 |   2   0   0   2 |   *   *   * 360   *   *  * |  0  0  1   0   1  1 0 |  0  1  1 1
. . x3x . |   6 |   0   3   3   0 |   *   *   *   * 120   *  * |  0  0  0   2   0  0 1 |  1  0  0 2
. . x . x |   4 |   0   2   0   2 |   *   *   *   *   * 180  * |  0  0  0   0   2  0 1 |  0  1  0 2
. . . x5x |  10 |   0   0   5   5 |   *   *   *   *   *   * 72 |  0  0  0   0   0  2 1 |  0  0  1 2
----------+-----+-----------------+----------------------------+-----------------------+-----------
x6o x . .   12 |  12   6   0   0 |   2   6   0   0   0   0  0 | 60  *  *   *   *  * * |  1  1  0 0
x6o . x .   12 |  12   0   6   0 |   2   0   6   0   0   0  0 |  * 60  *   *   *  * * |  1  0  1 0
x6o . . x   12 |  12   0   0   6 |   2   0   0   6   0   0  0 |  *  * 60   *   *  * * |  0  1  1 0
x . x3x .   12 |   6   6   6   0 |   0   3   3   0   2   0  0 |  *  *  * 120   *  * * |  1  0  0 1
x . x . x    8 |   4   4   0   4 |   0   2   0   2   0   2  0 |  *  *  *   * 180  * * |  0  1  0 1
x . . x5x   20 |  10   0  10  10 |   0   0   5   5   0   0  2 |  *  *  *   *   * 72 * |  0  0  1 1
. . x3x5x  120 |   0  60  60  60 |   0   0   0   0  20  30 12 |  *  *  *   *   *  * 6 |  0  0  0 2
----------+-----+-----------------+----------------------------+-----------------------+-----------
x6o x3x .   36 |  36  18  18   0 |   6  18  18   0   6   0  0 |  3  3  0   6   0  0 0 | 20  *  * *
x6o x . x   24 |  24  12   0  12 |   4  12   0  12   0   6  0 |  2  0  2   0   6  0 0 |  * 30  * *
x6o . x5x   60 |  60   0  30  30 |  10   0  30  30   0   0  6 |  0  5  5   0   0  6 0 |  *  * 12 *
x . x3x5x  240 | 120 120 120 120 |   0  60  60  60  40  60 24 |  0  0  0  20  30 12 2 |  *  *  * 6

x3x x3x5x

. . . . . | 720 |   1   1   1   1   1 |   1   1   1   1   1   1   1   1   1  1 |  1  1  1  1  1  1  1  1  1 1 |  1  1  1 1 1
----------+-----+---------------------+----------------------------------------+------------------------------+-------------
x . . . . |   2 | 360   *   *   *   * |   1   1   1   1   0   0   0   0   0  0 |  1  1  1  1  1  1  0  0  0 0 |  1  1  1 1 0
. x . . . |   2 |   * 360   *   *   * |   1   0   0   0   1   1   1   0   0  0 |  1  1  1  0  0  0  1  1  1 0 |  1  1  1 0 1
. . x . . |   2 |   *   * 360   *   * |   0   1   0   0   1   0   0   1   1  0 |  1  0  0  1  1  0  1  1  0 1 |  1  1  0 1 1
. . . x . |   2 |   *   *   * 360   * |   0   0   1   0   0   1   0   1   0  1 |  0  1  0  1  0  1  1  0  1 1 |  1  0  1 1 1
. . . . x |   2 |   *   *   *   * 360 |   0   0   0   1   0   0   1   0   1  1 |  0  0  1  0  1  1  0  1  1 1 |  0  1  1 1 1
----------+-----+---------------------+----------------------------------------+------------------------------+-------------
x3x . . . |   6 |   3   3   0   0   0 | 120   *   *   *   *   *   *   *   *  * |  1  1  1  0  0  0  0  0  0 0 |  1  1  1 0 0
x . x . . |   4 |   2   0   2   0   0 |   * 180   *   *   *   *   *   *   *  * |  1  0  0  1  1  0  0  0  0 0 |  1  1  0 1 0
x . . x . |   4 |   2   0   0   2   0 |   *   * 180   *   *   *   *   *   *  * |  0  1  0  1  0  1  0  0  0 0 |  1  0  1 1 0
x . . . x |   4 |   2   0   0   0   2 |   *   *   * 180   *   *   *   *   *  * |  0  0  1  0  1  1  0  0  0 0 |  0  1  1 1 0
. x x . . |   4 |   0   2   2   0   0 |   *   *   *   * 180   *   *   *   *  * |  1  0  0  0  0  0  1  1  0 0 |  1  1  0 0 1
. x . x . |   4 |   0   2   0   2   0 |   *   *   *   *   * 180   *   *   *  * |  0  1  0  0  0  0  1  0  1 0 |  1  0  1 0 1
. x . . x |   4 |   0   2   0   0   2 |   *   *   *   *   *   * 180   *   *  * |  0  0  1  0  0  0  0  1  1 0 |  0  1  1 0 1
. . x3x . |   6 |   0   0   3   3   0 |   *   *   *   *   *   *   * 120   *  * |  0  0  0  1  0  0  1  0  0 1 |  1  0  0 1 1
. . x . x |   4 |   0   0   2   0   2 |   *   *   *   *   *   *   *   * 180  * |  0  0  0  0  1  0  0  1  0 1 |  0  1  0 1 1
. . . x5x |  10 |   0   0   0   5   5 |   *   *   *   *   *   *   *   *   * 72 |  0  0  0  0  0  1  0  0  1 1 |  0  0  1 1 1
----------+-----+---------------------+----------------------------------------+------------------------------+-------------
x3x x . .   12 |   6   6   6   0   0 |   2   3   0   0   3   0   0   0   0  0 | 60  *  *  *  *  *  *  *  * * |  1  1  0 0 0
x3x . x .   12 |   6   6   0   6   0 |   2   0   3   0   0   3   0   0   0  0 |  * 60  *  *  *  *  *  *  * * |  1  0  1 0 0
x3x . . x   12 |   6   6   0   0   6 |   2   0   0   3   0   0   3   0   0  0 |  *  * 60  *  *  *  *  *  * * |  0  1  1 0 0
x . x3x .   12 |   6   0   6   6   0 |   0   3   3   0   0   0   0   2   0  0 |  *  *  * 60  *  *  *  *  * * |  1  0  0 1 0
x . x . x    8 |   4   0   4   0   4 |   0   2   0   2   0   0   0   0   2  0 |  *  *  *  * 90  *  *  *  * * |  0  1  0 1 0
x . . x5x   20 |  10   0   0  10  10 |   0   0   5   5   0   0   0   0   0  2 |  *  *  *  *  * 36  *  *  * * |  0  0  1 1 0
. x x3x .   12 |   0   6   6   6   0 |   0   0   0   0   3   3   0   2   0  0 |  *  *  *  *  *  * 60  *  * * |  1  0  0 0 1
. x x . x    8 |   0   4   4   0   4 |   0   0   0   0   2   0   2   0   2  0 |  *  *  *  *  *  *  * 90  * * |  0  1  0 0 1
. x . x5x   20 |   0  10   0  10  10 |   0   0   0   0   0   5   5   0   0  2 |  *  *  *  *  *  *  *  * 36 * |  0  0  1 0 1
. . x3x5x  120 |   0   0  60  60  60 |   0   0   0   0   0   0   0  20  30 12 |  *  *  *  *  *  *  *  *  * 6 |  0  0  0 1 1
----------+-----+---------------------+----------------------------------------+------------------------------+-------------
x3x x3x .   36 |  18  18  18  18   0 |   6   9   9   0   9   9   0   6   0  0 |  3  3  0  3  0  0  3  0  0 0 | 20  *  * * *
x3x x . x   24 |  12  12  12   0  12 |   4   6   0   6   6   0   6   0   6  0 |  2  0  2  0  3  0  0  3  0 0 |  * 30  * * *
x3x . x5x   60 |  30  30   0  30  30 |  10   0  15  15   0  15  15   0   0  6 |  0  5  5  0  0  3  0  0  3 0 |  *  * 12 * *
x . x3x5x  240 | 120   0 120 120 120 |   0  60  60  60   0   0   0  40  60 24 |  0  0  0 20 30 12  0  0  0 2 |  *  *  * 3 *
. x x3x5x  240 |   0 120 120 120 120 |   0   0   0   0  60  60  60  40  60 24 |  0  0  0  0  0  0 20 30 12 2 |  *  *  * * 3

© 2004-2025
top of page