Acronym | hagrid |
Name | hexagon - great-rhombicosidodecahedron duoprism |
Circumradius | sqrt[35+12 sqrt(5)]/2 = 3.931692 |
Face vector | 720, 1800, 1572, 558, 68 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x6o x3x5x . . . . . | 720 | 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ----------+-----+-----------------+----------------------------+-----------------------+----------- x . . . . | 2 | 720 * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x . . | 2 | * 360 * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x . | 2 | * * 360 * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * * 360 | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ----------+-----+-----------------+----------------------------+-----------------------+----------- x6o . . . | 6 | 6 0 0 0 | 120 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . x . . | 4 | 2 2 0 0 | * 360 * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 x . . x . | 4 | 2 0 2 0 | * * 360 * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 x . . . x | 4 | 2 0 0 2 | * * * 360 * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3x . | 6 | 0 3 3 0 | * * * * 120 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x . x | 4 | 0 2 0 2 | * * * * * 180 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x5x | 10 | 0 0 5 5 | * * * * * * 72 | 0 0 0 0 0 2 1 | 0 0 1 2 ----------+-----+-----------------+----------------------------+-----------------------+----------- x6o x . . ♦ 12 | 12 6 0 0 | 2 6 0 0 0 0 0 | 60 * * * * * * | 1 1 0 0 x6o . x . ♦ 12 | 12 0 6 0 | 2 0 6 0 0 0 0 | * 60 * * * * * | 1 0 1 0 x6o . . x ♦ 12 | 12 0 0 6 | 2 0 0 6 0 0 0 | * * 60 * * * * | 0 1 1 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 2 0 0 | * * * 120 * * * | 1 0 0 1 x . x . x ♦ 8 | 4 4 0 4 | 0 2 0 2 0 2 0 | * * * * 180 * * | 0 1 0 1 x . . x5x ♦ 20 | 10 0 10 10 | 0 0 5 5 0 0 2 | * * * * * 72 * | 0 0 1 1 . . x3x5x ♦ 120 | 0 60 60 60 | 0 0 0 0 20 30 12 | * * * * * * 6 | 0 0 0 2 ----------+-----+-----------------+----------------------------+-----------------------+----------- x6o x3x . ♦ 36 | 36 18 18 0 | 6 18 18 0 6 0 0 | 3 3 0 6 0 0 0 | 20 * * * x6o x . x ♦ 24 | 24 12 0 12 | 4 12 0 12 0 6 0 | 2 0 2 0 6 0 0 | * 30 * * x6o . x5x ♦ 60 | 60 0 30 30 | 10 0 30 30 0 0 6 | 0 5 5 0 0 6 0 | * * 12 * x . x3x5x ♦ 240 | 120 120 120 120 | 0 60 60 60 40 60 24 | 0 0 0 20 30 12 2 | * * * 6
x3x x3x5x . . . . . | 720 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 ----------+-----+---------------------+----------------------------------------+------------------------------+------------- x . . . . | 2 | 360 * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . x . . . | 2 | * 360 * * * | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 360 * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 360 * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * * 360 | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ----------+-----+---------------------+----------------------------------------+------------------------------+------------- x3x . . . | 6 | 3 3 0 0 0 | 120 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 0 | * 180 * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 0 | * * 180 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 0 2 | * * * 180 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x x . . | 4 | 0 2 2 0 0 | * * * * 180 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 0 2 0 | * * * * * 180 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * * 180 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3x . | 6 | 0 0 3 3 0 | * * * * * * * 120 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 0 2 | * * * * * * * * 180 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x5x | 10 | 0 0 0 5 5 | * * * * * * * * * 72 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ----------+-----+---------------------+----------------------------------------+------------------------------+------------- x3x x . . ♦ 12 | 6 6 6 0 0 | 2 3 0 0 3 0 0 0 0 0 | 60 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 0 6 0 | 2 0 3 0 0 3 0 0 0 0 | * 60 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 0 6 | 2 0 0 3 0 0 3 0 0 0 | * * 60 * * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 0 | 0 3 3 0 0 0 0 2 0 0 | * * * 60 * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 0 4 | 0 2 0 2 0 0 0 0 2 0 | * * * * 90 * * * * * | 0 1 0 1 0 x . . x5x ♦ 20 | 10 0 0 10 10 | 0 0 5 5 0 0 0 0 0 2 | * * * * * 36 * * * * | 0 0 1 1 0 . x x3x . ♦ 12 | 0 6 6 6 0 | 0 0 0 0 3 3 0 2 0 0 | * * * * * * 60 * * * | 1 0 0 0 1 . x x . x ♦ 8 | 0 4 4 0 4 | 0 0 0 0 2 0 2 0 2 0 | * * * * * * * 90 * * | 0 1 0 0 1 . x . x5x ♦ 20 | 0 10 0 10 10 | 0 0 0 0 0 5 5 0 0 2 | * * * * * * * * 36 * | 0 0 1 0 1 . . x3x5x ♦ 120 | 0 0 60 60 60 | 0 0 0 0 0 0 0 20 30 12 | * * * * * * * * * 6 | 0 0 0 1 1 ----------+-----+---------------------+----------------------------------------+------------------------------+------------- x3x x3x . ♦ 36 | 18 18 18 18 0 | 6 9 9 0 9 9 0 6 0 0 | 3 3 0 3 0 0 3 0 0 0 | 20 * * * * x3x x . x ♦ 24 | 12 12 12 0 12 | 4 6 0 6 6 0 6 0 6 0 | 2 0 2 0 3 0 0 3 0 0 | * 30 * * * x3x . x5x ♦ 60 | 30 30 0 30 30 | 10 0 15 15 0 15 15 0 0 6 | 0 5 5 0 0 3 0 0 3 0 | * * 12 * * x . x3x5x ♦ 240 | 120 0 120 120 120 | 0 60 60 60 0 0 0 40 60 24 | 0 0 0 20 30 12 0 0 0 2 | * * * 3 * . x x3x5x ♦ 240 | 0 120 120 120 120 | 0 0 0 0 60 60 60 40 60 24 | 0 0 0 0 0 0 20 30 12 2 | * * * * 3
© 2004-2025 | top of page |