Acronym n,grid-dip
Name n-gon - great-rhombicosidodecahedron duoprism
Circumradius sqrt[(31+12 sqrt(5))/4+1/(4 sin2(π/n))]
Face vector 120n, 300n, 242n+120, 63n+180, n+62
Especially tragrid (n=3)   squagrid (n=4)   hagrid (n=6)   ogrid (n=8)  
Confer
general polytopal classes:
Wythoffian polytera  

Incidence matrix according to Dynkin symbol

xno x3x5x   (n>2)

. . . . . | 120n |    2   1   1   1 |   1   2   2   2   1   1   1 |  1  1  1   2   2   2 1 |  1  1  1 2
----------+------+------------------+-----------------------------+------------------------+-----------
x . . . . |    2 | 120n   *   *   * |   1   1   1   1   0   0   0 |  1  1  1   1   1   1 0 |  1  1  1 1
. . x . . |    2 |    * 60n   *   * |   0   2   0   0   1   1   0 |  1  0  0   2   2   0 1 |  1  1  0 2
. . . x . |    2 |    *   * 60n   * |   0   0   2   0   1   0   1 |  0  1  0   2   0   2 1 |  1  0  1 2
. . . . x |    2 |    *   *   * 60n |   0   0   0   2   0   1   1 |  0  0  1   0   2   2 1 |  0  1  1 2
----------+------+------------------+-----------------------------+------------------------+-----------
xno . . . |    n |    n   0   0   0 | 120   *   *   *   *   *   * |  1  1  1   0   0   0 0 |  1  1  1 0
x . x . . |    4 |    2   2   0   0 |   * 60n   *   *   *   *   * |  1  0  0   1   1   0 0 |  1  1  0 1
x . . x . |    4 |    2   0   2   0 |   *   * 60n   *   *   *   * |  0  1  0   1   0   1 0 |  1  0  1 1
x . . . x |    4 |    2   0   0   2 |   *   *   * 60n   *   *   * |  0  0  1   0   1   1 0 |  0  1  1 1
. . x3x . |    6 |    0   3   3   0 |   *   *   *   * 20n   *   * |  0  0  0   2   0   0 1 |  1  0  0 2
. . x . x |    4 |    0   2   0   2 |   *   *   *   *   * 30n   * |  0  0  0   0   2   0 1 |  0  1  0 2
. . . x5x |   10 |    0   0   5   5 |   *   *   *   *   *   * 12n |  0  0  0   0   0   2 1 |  0  0  1 2
----------+------+------------------+-----------------------------+------------------------+-----------
xno x . .    2n |   2n   n   0   0 |   2   n   0   0   0   0   0 | 60  *  *   *   *   * * |  1  1  0 0
xno . x .    2n |   2n   0   n   0 |   2   0   n   0   0   0   0 |  * 60  *   *   *   * * |  1  0  1 0
xno . . x    2n |   2n   0   0   n |   2   0   0   n   0   0   0 |  *  * 60   *   *   * * |  0  1  1 0
x . x3x .    12 |    6   6   6   0 |   0   3   3   0   2   0   0 |  *  *  * 20n   *   * * |  1  0  0 1
x . x . x     8 |    4   4   0   4 |   0   2   0   2   0   2   0 |  *  *  *   * 30n   * * |  0  1  0 1
x . . x5x    20 |   10   0  10  10 |   0   0   5   5   0   0   2 |  *  *  *   *   * 12n * |  0  0  1 1
. . x3x5x   120 |    0  60  60  60 |   0   0   0   0  20  30  12 |  *  *  *   *   *   * n |  0  0  0 2
----------+------+------------------+-----------------------------+------------------------+-----------
xno x3x .    6n |   6n  3n  3n   0 |   6  3n  3n   0   n   0   0 |  3  3  0   n   0   0 0 | 20  *  * *
xno x . x    4n |   4n  2n   0  2n |   4  2n   0  2n   0   n   0 |  2  0  2   0   n   0 0 |  * 30  * *
xno . x5x   10n |  10n   0  5n  5n |  10   0  5n  5n   0   0   n |  0  5  5   0   0   n 0 |  *  * 12 *
x . x3x5x   240 |  120 120 120 120 |   0  60  60  60  40  60  24 |  0  0  0  20  30  12 2 |  *  *  * n

© 2004-2025
top of page