Acronym | guti |
Name | great tetrakisicositetrachoron |
Circumradius | sqrt[4+sqrt(2)] = 2.326846 |
Colonel of regiment | ditdi |
Face vector | 576, 1440, 960, 96 |
Confer |
|
External links |
As abstract polytope guti is isomorphic to suti, thereby replacing octagons by octagrams, and thus tic by quith, girco by quitco and additionally querco by sirco. – As such guti is a lieutenant.
Incidence matrix according to Dynkin symbol
x3x4x3o4/3*a . . . . | 576 | 2 1 2 | 2 2 1 2 1 | 2 1 1 1 -------------+-----+-------------+---------------------+------------ x . . . | 2 | 576 * * | 1 1 1 0 0 | 1 1 1 0 . x . . | 2 | * 288 * | 2 0 0 2 0 | 2 1 0 1 . . x . | 2 | * * 576 | 0 1 0 1 1 | 1 0 1 1 -------------+-----+-------------+---------------------+------------ x3x . . | 6 | 3 3 0 | 192 * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 | * 288 * * * | 1 0 1 0 x . . o4/3*a | 4 | 4 0 0 | * * 144 * * | 0 1 1 0 . x4x . | 8 | 0 4 4 | * * * 144 * | 1 0 0 1 . . x3o | 3 | 0 0 3 | * * * * 192 | 0 0 1 1 -------------+-----+-------------+---------------------+------------ x3x4x . ♦ 48 | 24 24 24 | 8 12 0 6 0 | 24 * * * x3x . o4/3*a ♦ 24 | 24 12 0 | 8 0 6 0 0 | * 24 * * x . x3o4/3*a ♦ 24 | 24 0 24 | 0 12 6 0 8 | * * 24 * . x4x3o ♦ 24 | 0 12 24 | 0 0 0 6 8 | * * * 24
x3x4x3/2o4*a . . . . | 576 | 2 1 2 | 2 2 1 2 1 | 2 1 1 1 -------------+-----+-------------+---------------------+------------ x . . . | 2 | 576 * * | 1 1 1 0 0 | 1 1 1 0 . x . . | 2 | * 288 * | 2 0 0 2 0 | 2 1 0 1 . . x . | 2 | * * 576 | 0 1 0 1 1 | 1 0 1 1 -------------+-----+-------------+---------------------+------------ x3x . . | 6 | 3 3 0 | 192 * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 | * 288 * * * | 1 0 1 0 x . . o4*a | 4 | 4 0 0 | * * 144 * * | 0 1 1 0 . x4x . | 8 | 0 4 4 | * * * 144 * | 1 0 0 1 . . x3/2o | 3 | 0 0 3 | * * * * 192 | 0 0 1 1 -------------+-----+-------------+---------------------+------------ x3x4x . ♦ 48 | 24 24 24 | 8 12 0 6 0 | 24 * * * x3x . o4*a ♦ 24 | 24 12 0 | 8 0 6 0 0 | * 24 * * x . x3/2o4*a ♦ 24 | 24 0 24 | 0 12 6 0 8 | * * 24 * . x4x3/2o ♦ 24 | 0 12 24 | 0 0 0 6 8 | * * * 24 x3/2o4x3x4*a . . . . | 576 | 2 2 1 | 1 2 2 1 2 | 1 1 2 1 -------------+-----+-------------+---------------------+------------ x . . . | 2 | 576 * * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 576 * | 0 1 0 1 1 | 1 0 1 1 . . . x | 2 | * * 288 | 0 0 2 0 2 | 0 1 2 1 -------------+-----+-------------+---------------------+------------ x3/2o . . | 3 | 3 0 0 | 192 * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 288 * * * | 1 0 1 0 x . . x4*a | 8 | 4 0 4 | * * 144 * * | 0 1 1 0 . o4x . | 4 | 0 4 0 | * * * 144 * | 1 0 0 1 . . x3x | 6 | 0 3 3 | * * * * 192 | 0 0 1 1 -------------+-----+-------------+---------------------+------------ x3/2o4x . ♦ 24 | 24 24 0 | 8 12 0 6 0 | 24 * * * x3/2o . x4*a ♦ 24 | 24 0 12 | 8 0 6 0 0 | * 24 * * x . x3x4*a ♦ 48 | 24 24 24 | 0 12 6 0 8 | * * 24 * . o4x3x ♦ 24 | 0 24 12 | 0 0 0 6 8 | * * * 24
© 2004-2025 | top of page |