Acronym guti
Name great tetrakisicositetrachoron
Circumradius sqrt[4+sqrt(2)] = 2.326846
Colonel of regiment ditdi
External
links
hedrondude   WikiChoron  

As abstract polytope guti is isomorphic to suti, thereby replacing octagons by octagrams, and thus tic by quith, girco by quitco and additionally querco by sirco. – As such guti is a lieutenant.


Incidence matrix according to Dynkin symbol

x3x4x3o4/3*a

. . . .      | 576 |   2   1   2 |   2   2   1   2   1 |  2  1  1  1
-------------+-----+-------------+---------------------+------------
x . . .      |   2 | 576   *   * |   1   1   1   0   0 |  1  1  1  0
. x . .      |   2 |   * 288   * |   2   0   0   2   0 |  2  1  0  1
. . x .      |   2 |   *   * 576 |   0   1   0   1   1 |  1  0  1  1
-------------+-----+-------------+---------------------+------------
x3x . .      |   6 |   3   3   0 | 192   *   *   *   * |  1  1  0  0
x . x .      |   4 |   2   0   2 |   * 288   *   *   * |  1  0  1  0
x . . o4/3*a |   4 |   4   0   0 |   *   * 144   *   * |  0  1  1  0
. x4x .      |   8 |   0   4   4 |   *   *   * 144   * |  1  0  0  1
. . x3o      |   3 |   0   0   3 |   *   *   *   * 192 |  0  0  1  1
-------------+-----+-------------+---------------------+------------
x3x4x .        48 |  24  24  24 |   8  12   0   6   0 | 24  *  *  *
x3x . o4/3*a   24 |  24  12   0 |   8   0   6   0   0 |  * 24  *  *
x . x3o4/3*a   24 |  24   0  24 |   0  12   6   0   8 |  *  * 24  *
. x4x3o        24 |   0  12  24 |   0   0   0   6   8 |  *  *  * 24

x3x4x3/2o4*a

. . .   .    | 576 |   2   1   2 |   2   2   1   2   1 |  2  1  1  1
-------------+-----+-------------+---------------------+------------
x . .   .    |   2 | 576   *   * |   1   1   1   0   0 |  1  1  1  0
. x .   .    |   2 |   * 288   * |   2   0   0   2   0 |  2  1  0  1
. . x   .    |   2 |   *   * 576 |   0   1   0   1   1 |  1  0  1  1
-------------+-----+-------------+---------------------+------------
x3x .   .    |   6 |   3   3   0 | 192   *   *   *   * |  1  1  0  0
x . x   .    |   4 |   2   0   2 |   * 288   *   *   * |  1  0  1  0
x . .   o4*a |   4 |   4   0   0 |   *   * 144   *   * |  0  1  1  0
. x4x   .    |   8 |   0   4   4 |   *   *   * 144   * |  1  0  0  1
. . x3/2o    |   3 |   0   0   3 |   *   *   *   * 192 |  0  0  1  1
-------------+-----+-------------+---------------------+------------
x3x4x   .      48 |  24  24  24 |   8  12   0   6   0 | 24  *  *  *
x3x .   o4*a   24 |  24  12   0 |   8   0   6   0   0 |  * 24  *  *
x . x3/2o4*a   24 |  24   0  24 |   0  12   6   0   8 |  *  * 24  *
. x4x3/2o      24 |   0  12  24 |   0   0   0   6   8 |  *  *  * 24

x3/2o4x3x4*a

.   . . .    | 576 |   2   2   1 |   1   2   2   1   2 |  1  1  2  1
-------------+-----+-------------+---------------------+------------
x   . . .    |   2 | 576   *   * |   1   1   1   0   0 |  1  1  1  0
.   . x .    |   2 |   * 576   * |   0   1   0   1   1 |  1  0  1  1
.   . . x    |   2 |   *   * 288 |   0   0   2   0   2 |  0  1  2  1
-------------+-----+-------------+---------------------+------------
x3/2o . .    |   3 |   3   0   0 | 192   *   *   *   * |  1  1  0  0
x   . x .    |   4 |   2   2   0 |   * 288   *   *   * |  1  0  1  0
x   . . x4*a |   8 |   4   0   4 |   *   * 144   *   * |  0  1  1  0
.   o4x .    |   4 |   0   4   0 |   *   *   * 144   * |  1  0  0  1
.   . x3x    |   6 |   0   3   3 |   *   *   *   * 192 |  0  0  1  1
-------------+-----+-------------+---------------------+------------
x3/2o4x .      24 |  24  24   0 |   8  12   0   6   0 | 24  *  *  *
x3/2o . x4*a   24 |  24   0  12 |   8   0   6   0   0 |  * 24  *  *
x   . x3x4*a   48 |  24  24  24 |   0  12   6   0   8 |  *  * 24  *
.   o4x3x      24 |   0  24  12 |   0   0   0   6   8 |  *  *  * 24

© 2004-2019
top of page