Acronym grittit
Name great prismatotesseractic tetracomb,
cantitruncated tesseractic tetracomb
Confer
general polytopal classes:
partial Stott expansions  
External
links
wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

x4x3x3o4o   (N → ∞)

. . . . . | 48N |   1   1   4 |  1   4   4   4 |  4   4   4  1 | 4  1 1
----------+-----+-------------+----------------+---------------+-------
x . . . . |   2 | 24N   *   * |  1   4   0   0 |  4   4   0  0 | 4  1 0
. x . . . |   2 |   * 24N   * |  1   0   4   0 |  4   0   4  0 | 4  0 1
. . x . . |   2 |   *   * 96N |  0   1   1   2 |  1   2   2  1 | 2  1 1
----------+-----+-------------+----------------+---------------+-------
x4x . . . |   8 |   4   4   0 | 6N   *   *   * |  4   0   0  0 | 4  0 0
x . x . . |   4 |   2   0   2 |  * 48N   *   * |  1   2   0  0 | 2  1 0
. x3x . . |   6 |   0   3   3 |  *   * 32N   * |  1   0   2  0 | 2  0 1
. . x3o . |   3 |   0   0   3 |  *   *   * 64N |  0   1   1  1 | 1  1 1
----------+-----+-------------+----------------+---------------+-------
x4x3x . .   48 |  24  24  24 |  6  12   8   0 | 4N   *   *  * | 2  0 0
x . x3o .    6 |   3   0   6 |  0   3   0   2 |  * 32N   *  * | 1  1 0
. x3x3o .   12 |   0   6  12 |  0   0   4   4 |  *   * 16N  * | 1  0 1
. . x3o4o    6 |   0   0  12 |  0   0   0   8 |  *   *   * 8N | 0  1 1
----------+-----+-------------+----------------+---------------+-------
x4x3x3o .  192 |  96  96 192 | 24  96  64  64 |  8  32  16  0 | N  * *
x . x3o4o   12 |   6   0  24 |  0  12   0  16 |  0   8   0  2 | * 4N *
. x3x3o4o   48 |   0  24  96 |  0   0  32  64 |  0   0  16  8 | *  * N

o3x3o *b3x4x   (N → ∞)

. . .    . . | 96N |    4   1   1 |   2   2   4   4   1 |   1   2   2   2   2  4 |  1  1 2 2
-------------+-----+--------------+---------------------+------------------------+----------
. x .    . . |   2 | 192N   *   * |   1   1   1   1   0 |   1   1   1   1   1  1 |  1  1 1 1
. . .    x . |   2 |    * 48N   * |   0   0   4   0   1 |   0   2   0   2   0  4 |  1  0 2 2
. . .    . x |   2 |    *   * 48N |   0   0   0   4   1 |   0   0   2   0   2  4 |  0  1 2 2
-------------+-----+--------------+---------------------+------------------------+----------
o3x .    . . |   3 |    3   0   0 | 64N   *   *   *   * |   1   1   1   0   0  0 |  1  1 1 0
. x3o    . . |   3 |    3   0   0 |   * 64N   *   *   * |   1   0   0   1   1  0 |  1  1 0 1
. x . *b3x . |   6 |    3   3   0 |   *   * 64N   *   * |   0   1   0   1   0  1 |  1  0 1 1
. x .    . x |   4 |    2   0   2 |   *   *   * 96N   * |   0   0   1   0   1  1 |  0  1 1 1
. . .    x4x |   8 |    0   4   4 |   *   *   *   * 12N |   0   0   0   0   0  4 |  0  0 2 2
-------------+-----+--------------+---------------------+------------------------+----------
o3x3o    . .    6 |   12   0   0 |   4   4   0   0   0 | 16N   *   *   *   *  * |  1  1 0 0
o3x . *b3x .   12 |   12   6   0 |   4   0   4   0   0 |   * 16N   *   *   *  * |  1  0 1 0
o3x .    . x    6 |    6   0   3 |   2   0   0   3   0 |   *   * 32N   *   *  * |  0  1 1 0
. x3o *b3x .   12 |   12   6   0 |   0   4   4   0   0 |   *   *   * 16N   *  * |  1  0 0 1
. x3o    . x    6 |    6   0   3 |   0   2   0   3   0 |   *   *   *   * 32N  * |  0  1 0 1
. x . *b3x4x   48 |   24  24  24 |   0   0   8  12   6 |   *   *   *   *   * 8N |  0  0 1 1
-------------+-----+--------------+---------------------+------------------------+----------
o3x3o *b3x .   48 |   96  24   0 |  32  32  32   0   0 |   8   8   0   8   0  0 | 2N  * * *
o3x3o    . x   12 |   24   0   6 |   8   8   0  12   0 |   2   0   4   0   4  0 |  * 8N * *
o3x . *b3x4x  192 |  192  96  96 |  64   0  64  96  24 |   0  16  32   0   0  8 |  *  * N *
. x3o *b3x4x  192 |  192  96  96 |   0  64  64  96  24 |   0   0   0  16  32  8 |  *  * * N

© 2004-2024
top of page