Acronym gaquatiddip
Name great-quasitruncated-icosidodecahedron prism
Circumradius sqrt[8-3 sqrt(5)] = 1.136572
Dihedral angles
  • at {4} between cube and stiddip:   arccos(-sqrt[(5-sqrt(5))/10]) = 121.717474°
  • at {4} between cube and gaquatid:   90°
  • at {10/3} between gaquatid and stiddip:   90°
  • at {6} between gaquatid and hip:   90°
  • at {4} between hip and stiddip:   arccos(sqrt[(5-2 sqrt(5))/15]) = 79.187683°
  • at {4} between cube and hip:   arccos(sqrt[(3-sqrt(5))/6]) = 69.094843°
Face vector 240, 480, 304, 64
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki  

As abstract polytope gaquatiddip is isomorphic to griddip, thereby replacing decagrams by decagons, resp. replacing gaquatid by grid and stiddip by dip.


Incidence matrix according to Dynkin symbol

x x3x5/3x

. . .   . | 240 |   1   1   1   1 |  1  1  1  1  1  1 |  1  1  1 1
----------+-----+-----------------+-------------------+-----------
x . .   . |   2 | 120   *   *   * |  1  1  1  0  0  0 |  1  1  1 0
. x .   . |   2 |   * 120   *   * |  1  0  0  1  1  0 |  1  1  0 1
. . x   . |   2 |   *   * 120   * |  0  1  0  1  0  1 |  1  0  1 1
. . .   x |   2 |   *   *   * 120 |  0  0  1  0  1  1 |  0  1  1 1
----------+-----+-----------------+-------------------+-----------
x x .   . |   4 |   2   2   0   0 | 60  *  *  *  *  * |  1  1  0 0
x . x   . |   4 |   2   0   2   0 |  * 60  *  *  *  * |  1  0  1 0
x . .   x |   4 |   2   0   0   2 |  *  * 60  *  *  * |  0  1  1 0
. x3x   . |   6 |   0   3   3   0 |  *  *  * 40  *  * |  1  0  0 1
. x .   x |   4 |   0   2   0   2 |  *  *  *  * 60  * |  0  1  0 1
. . x5/3x |  10 |   0   0   5   5 |  *  *  *  *  * 24 |  0  0  1 1
----------+-----+-----------------+-------------------+-----------
x x3x   .   12 |   6   6   6   0 |  3  3  0  2  0  0 | 20  *  * *
x x .   x    8 |   4   4   0   4 |  2  0  2  0  2  0 |  * 30  * *
x . x5/3x   20 |  10   0  10  10 |  0  5  5  0  0  2 |  *  * 12 *
. x3x5/3x  120 |   0  60  60  60 |  0  0  0 20 30 12 |  *  *  * 2

© 2004-2024
top of page