Acronym | gixhidy | ||||||||||||||||||
Name | great hexacosihecatonicosadishecatonicosachoron | ||||||||||||||||||
Cross sections |
© | ||||||||||||||||||
Circumradius | sqrt[(11-3 sqrt(5))/2] = 1.464888 | ||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| ||||||||||||||||||
Face vector | 2400, 7200, 5280, 960 | ||||||||||||||||||
Confer |
| ||||||||||||||||||
External links |
As abstract polytope gixhidy is isomorphical to sixhidy, thereby replacinging decagrams by decagons and pentagons by pentagrams, respectively replacinging quit gissid by tid, quit sissid by tigid, and doe by gissid.
Incidence matrix according to Dynkin symbol
x3o3o5x5/3*a . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 -------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 -------------+------+-----------+----------------+---------------- x3o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x5/3*a | 10 | 5 5 | * 1440 * | 0 1 1 0 . . o5x | 5 | 0 5 | * * 1440 | 0 0 1 1 -------------+------+-----------+----------------+---------------- x3o3o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3o . x5/3*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5x5/3*a ♦ 60 | 30 60 | 0 12 12 | * * 120 * . o3o5x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3o3/2o5/4x5/3*a . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 -----------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 -----------------+------+-----------+----------------+---------------- x3o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x5/3*a | 10 | 5 5 | * 1440 * | 0 1 1 0 . . o5/4x | 5 | 0 5 | * * 1440 | 0 0 1 1 -----------------+------+-----------+----------------+---------------- x3o3/2o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3o . x5/3*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/4x5/3*a ♦ 60 | 30 60 | 0 12 12 | * * 120 * . o3/2o5/4x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3/2o3o5/4x5/3*a . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 -----------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 -----------------+------+-----------+----------------+---------------- x3/2o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x5/3*a | 10 | 5 5 | * 1440 * | 0 1 1 0 . . o5/4x | 5 | 0 5 | * * 1440 | 0 0 1 1 -----------------+------+-----------+----------------+---------------- x3/2o3o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3/2o . x5/3*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/4x5/3*a ♦ 60 | 30 60 | 0 12 12 | * * 120 * . o3o5/4x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3/2o3/2o5x5/3*a . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 -----------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 -----------------+------+-----------+----------------+---------------- x3/2o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x5/3*a | 10 | 5 5 | * 1440 * | 0 1 1 0 . . o5x | 5 | 0 5 | * * 1440 | 0 0 1 1 -----------------+------+-----------+----------------+---------------- x3/2o3/2o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3/2o . x5/3*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5x5/3*a ♦ 60 | 30 60 | 0 12 12 | * * 120 * . o3/2o5x ♦ 20 | 0 30 | 0 0 12 | * * * 120
© 2004-2024 | top of page |