| Acronym | gohihix | 
| Name | great hecatonicosihecatonicosihexacosachoron | 
| Cross sections | 
  | 
| Circumradius | sqrt[(11-3 sqrt(5))/2] = 1.464888 | 
| Colonel of regiment | gixhidy | 
| Face vector | 2400, 7200, 5040, 540 | 
| Confer | 
	
  | 
| 
External links  | 
 
  
 
  
 | 
As abstract polytope gohihix is isomorphical to shihix, thereby replacinging pentagons by pentagrams, respectively replacinging doe by gissid and giid by siid. – As such gohihix is a lieutenant.
Incidence matrix according to Dynkin symbol
     o     
   3 |     
     o     
  3 / \ 5/4
   x---x   
     3     
o3o3x3x5/4*b . . . . | 2400 | 3 3 | 3 3 3 | 1 1 3 -------------+------+-----------+----------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 -------------+------+-----------+----------------+------------ . o3x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5/4*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x3x | 6 | 3 3 | * * 1200 | 0 0 2 -------------+------+-----------+----------------+------------ o3o3x . ♦ 4 | 6 0 | 4 0 0 | 600 * * o3o . x5/4*b ♦ 20 | 0 30 | 0 12 0 | * 120 * . o3x3x5/4*b ♦ 60 | 60 60 | 20 12 20 | * * 120
     o    
   3 |    
     o    
3/2 / \ 5 
   x---x  
     3    
o3o3/2x3x5*b . . . . | 2400 | 3 3 | 3 3 3 | 1 1 3 -------------+------+-----------+----------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 -------------+------+-----------+----------------+------------ . o3/2x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x3x | 6 | 3 3 | * * 1200 | 0 0 2 -------------+------+-----------+----------------+------------ o3o3/2x . ♦ 4 | 6 0 | 4 0 0 | 600 * * o3o . x5*b ♦ 20 | 0 30 | 0 12 0 | * 120 * . o3/2x3x5*b ♦ 60 | 60 60 | 20 12 20 | * * 120
     o     
 3/2 |     
     o     
  3 / \ 5/4
   x---x   
     3     
o3/2o3x3x5/4*b . . . . | 2400 | 3 3 | 3 3 3 | 1 1 3 ---------------+------+-----------+----------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 ---------------+------+-----------+----------------+------------ . o3x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5/4*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x3x | 6 | 3 3 | * * 1200 | 0 0 2 ---------------+------+-----------+----------------+------------ o3/2o3x . ♦ 4 | 6 0 | 4 0 0 | 600 * * o3/2o . x5/4*b ♦ 20 | 0 30 | 0 12 0 | * 120 * . o3x3x5/4*b ♦ 60 | 60 60 | 20 12 20 | * * 120
     o    
 3/2 |    
     o    
3/2 / \ 5 
   x---x  
     3    
o3/2o3/2x3x5*b . . . . | 2400 | 3 3 | 3 3 3 | 1 1 3 ---------------+------+-----------+----------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 ---------------+------+-----------+----------------+------------ . o3/2x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x3x | 6 | 3 3 | * * 1200 | 0 0 2 ---------------+------+-----------+----------------+------------ o3/2o3/2x . ♦ 4 | 6 0 | 4 0 0 | 600 * * o3/2o . x5*b ♦ 20 | 0 30 | 0 12 0 | * 120 * . o3/2x3x5*b ♦ 60 | 60 60 | 20 12 20 | * * 120
© 2004-2025  | top of page |