Acronym sixhidy Name small hexacosihecatonicosadishecatonicosachoron Cross sections ` ©` Circumradius sqrt[(11+3 sqrt(5))/2] = 2.975584 Colonel of regiment shihix Externallinks

As abstract polytope sixhidy is isomorphical to gixhidy, thereby replacinging decagons by decagrams and pentagrams by pentagons, respectively replacinging tid by quit gissid, tigid by quit sissid, and gissid by doe. – As such sixhidy is a lieutenant.

Incidence matrix according to Dynkin symbol

```x3o3o5/3x5*a

. . .   .    | 2400 |    3    3 |    3    6    3 |   1   3   3   1
-------------+------+-----------+----------------+----------------
x . .   .    |    2 | 3600    * |    2    2    0 |   1   2   1   0
. . .   x    |    2 |    * 3600 |    0    2    2 |   0   1   2   1
-------------+------+-----------+----------------+----------------
x3o .   .    |    3 |    3    0 | 2400    *    * |   1   1   0   0
x . .   x5*a |   10 |    5    5 |    * 1440    * |   0   1   1   0
. . o5/3x    |    5 |    0    5 |    *    * 1440 |   0   0   1   1
-------------+------+-----------+----------------+----------------
x3o3o   .    ♦    4 |    6    0 |    4    0    0 | 600   *   *   *
x3o .   x5*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x . o5/3x5*a ♦   60 |   30   60 |    0   12   12 |   *   * 120   *
. o3o5/3x    ♦   20 |    0   30 |    0    0   12 |   *   *   * 120
```

```x3o3/2o5/2x5*a

. .   .   .    | 2400 |    3    3 |    3    6    3 |   1   3   3   1
---------------+------+-----------+----------------+----------------
x .   .   .    |    2 | 3600    * |    2    2    0 |   1   2   1   0
. .   .   x    |    2 |    * 3600 |    0    2    2 |   0   1   2   1
---------------+------+-----------+----------------+----------------
x3o   .   .    |    3 |    3    0 | 2400    *    * |   1   1   0   0
x .   .   x5*a |   10 |    5    5 |    * 1440    * |   0   1   1   0
. .   o5/2x    |    5 |    0    5 |    *    * 1440 |   0   0   1   1
---------------+------+-----------+----------------+----------------
x3o3/2o   .    ♦    4 |    6    0 |    4    0    0 | 600   *   *   *
x3o   .   x5*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x .   o5/2x5*a ♦   60 |   30   60 |    0   12   12 |   *   * 120   *
. o3/2o5/2x    ♦   20 |    0   30 |    0    0   12 |   *   *   * 120
```

```x3/2o3o5/2x5*a

.   . .   .    | 2400 |    3    3 |    3    6    3 |   1   3   3   1
---------------+------+-----------+----------------+----------------
x   . .   .    |    2 | 3600    * |    2    2    0 |   1   2   1   0
.   . .   x    |    2 |    * 3600 |    0    2    2 |   0   1   2   1
---------------+------+-----------+----------------+----------------
x3/2o .   .    |    3 |    3    0 | 2400    *    * |   1   1   0   0
x   . .   x5*a |   10 |    5    5 |    * 1440    * |   0   1   1   0
.   . o5/2x    |    5 |    0    5 |    *    * 1440 |   0   0   1   1
---------------+------+-----------+----------------+----------------
x3/2o3o   .    ♦    4 |    6    0 |    4    0    0 | 600   *   *   *
x3/2o .   x5*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x   . o5/2x5*a ♦   60 |   30   60 |    0   12   12 |   *   * 120   *
.   o3o5/2x    ♦   20 |    0   30 |    0    0   12 |   *   *   * 120
```

```x3/2o3/2o5/3x5*a

.   .   .   .    | 2400 |    3    3 |    3    6    3 |   1   3   3   1
-----------------+------+-----------+----------------+----------------
x   .   .   .    |    2 | 3600    * |    2    2    0 |   1   2   1   0
.   .   .   x    |    2 |    * 3600 |    0    2    2 |   0   1   2   1
-----------------+------+-----------+----------------+----------------
x3/2o   .   .    |    3 |    3    0 | 2400    *    * |   1   1   0   0
x   .   .   x5*a |   10 |    5    5 |    * 1440    * |   0   1   1   0
.   .   o5/3x    |    5 |    0    5 |    *    * 1440 |   0   0   1   1
-----------------+------+-----------+----------------+----------------
x3/2o3/2o   .    ♦    4 |    6    0 |    4    0    0 | 600   *   *   *
x3/2o   .   x5*a ♦   60 |   60   30 |   20   12    0 |   * 120   *   *
x   .   o5/3x5*a ♦   60 |   30   60 |    0   12   12 |   *   * 120   *
.   o3/2o5/3x    ♦   20 |    0   30 |    0    0   12 |   *   *   * 120
```