Acronym | sixhidy |
Name | small hexacosihecatonicosadishecatonicosachoron |
Cross sections |
© |
Circumradius | sqrt[(11+3 sqrt(5))/2] = 2.975584 |
Colonel of regiment | shihix |
Face vector | 2400, 7200, 5280, 960 |
Confer |
|
External links |
As abstract polytope sixhidy is isomorphical to gixhidy, thereby replacinging decagons by decagrams and pentagrams by pentagons, respectively replacinging tid by quit gissid, tigid by quit sissid, and gissid by doe. – As such sixhidy is a lieutenant.
Incidence matrix according to Dynkin symbol
x3o3o5/3x5*a . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 -------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 -------------+------+-----------+----------------+---------------- x3o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x5*a | 10 | 5 5 | * 1440 * | 0 1 1 0 . . o5/3x | 5 | 0 5 | * * 1440 | 0 0 1 1 -------------+------+-----------+----------------+---------------- x3o3o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3o . x5*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/3x5*a ♦ 60 | 30 60 | 0 12 12 | * * 120 * . o3o5/3x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3o3/2o5/2x5*a . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 ---------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 ---------------+------+-----------+----------------+---------------- x3o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x5*a | 10 | 5 5 | * 1440 * | 0 1 1 0 . . o5/2x | 5 | 0 5 | * * 1440 | 0 0 1 1 ---------------+------+-----------+----------------+---------------- x3o3/2o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3o . x5*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/2x5*a ♦ 60 | 30 60 | 0 12 12 | * * 120 * . o3/2o5/2x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3/2o3o5/2x5*a . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 ---------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 ---------------+------+-----------+----------------+---------------- x3/2o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x5*a | 10 | 5 5 | * 1440 * | 0 1 1 0 . . o5/2x | 5 | 0 5 | * * 1440 | 0 0 1 1 ---------------+------+-----------+----------------+---------------- x3/2o3o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3/2o . x5*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/2x5*a ♦ 60 | 30 60 | 0 12 12 | * * 120 * . o3o5/2x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3/2o3/2o5/3x5*a . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 -----------------+------+-----------+----------------+---------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 -----------------+------+-----------+----------------+---------------- x3/2o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x5*a | 10 | 5 5 | * 1440 * | 0 1 1 0 . . o5/3x | 5 | 0 5 | * * 1440 | 0 0 1 1 -----------------+------+-----------+----------------+---------------- x3/2o3/2o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3/2o . x5*a ♦ 60 | 60 30 | 20 12 0 | * 120 * * x . o5/3x5*a ♦ 60 | 30 60 | 0 12 12 | * * 120 * . o3/2o5/3x ♦ 20 | 0 30 | 0 0 12 | * * * 120
© 2004-2025 | top of page |