Acronym girhin
Name great rhombated hemipenteract,
cantitruncated demipenteract,
runcicantic penteract
Field of sections
 ©
Circumradius sqrt(61/8) = 2.761340
Vertex figure
 ©
Coordinates (5/sqrt(8), 5/sqrt(8), 3/sqrt(8), 1/sqrt(8), 1/sqrt(8))     & all permutations, all even changes of sign
Face vector 480, 1200, 1040, 360, 42
Confer
general polytopal classes:
Wythoffian polytera   lace simplices   partial Stott expansions  
External
links
hedrondude   wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

x3x3o *b3x3o

. . .    . . | 480 |   1   2   2 |   2   2   1   4   1 |  1  4  1  2  2 |  2  2  1
-------------+-----+-------------+---------------------+----------------+---------
x . .    . . |   2 | 240   *   * |   2   2   0   0   0 |  1  4  1  0  0 |  2  2  0
. x .    . . |   2 |   * 480   * |   1   0   1   2   0 |  1  2  0  2  1 |  2  1  1
. . .    x . |   2 |   *   * 480 |   0   1   0   2   1 |  0  2  1  1  2 |  1  2  1
-------------+-----+-------------+---------------------+----------------+---------
x3x .    . . |   6 |   3   3   0 | 160   *   *   *   * |  1  2  0  0  0 |  2  1  0
x . .    x . |   4 |   2   0   2 |   * 240   *   *   * |  0  2  1  0  0 |  1  2  0
. x3o    . . |   3 |   0   3   0 |   *   * 160   *   * |  1  0  0  2  0 |  2  0  1
. x . *b3x . |   6 |   0   3   3 |   *   *   * 320   * |  0  1  0  1  1 |  1  1  1
. . .    x3o |   3 |   0   0   3 |   *   *   *   * 160 |  0  0  1  0  2 |  0  2  1
-------------+-----+-------------+---------------------+----------------+---------
x3x3o    . .   12 |   6  12   0 |   4   0   4   0   0 | 40  *  *  *  * |  2  0  0
x3x . *b3x .   24 |  12  12  12 |   4   6   0   4   0 |  * 80  *  *  * |  1  1  0
x . .    x3o    6 |   3   0   6 |   0   3   0   0   2 |  *  * 80  *  * |  0  2  0
. x3o *b3x .   12 |   0  12   6 |   0   0   4   4   0 |  *  *  * 80  * |  1  0  1
. x . *b3x3o   12 |   0   6  12 |   0   0   0   4   4 |  *  *  *  * 80 |  0  1  1
-------------+-----+-------------+---------------------+----------------+---------
x3x3o *b3x .   96 |  48  96  48 |  32  24  32  32   0 |  8  8  0  8  0 | 10  *  *
x3x . *b3x3o   60 |  30  30  60 |  10  30   0  20  20 |  0  5 10  0  5 |  * 16  *
. x3o *b3x3o   30 |   0  30  30 |   0   0  10  20  10 |  0  0  0  5  5 |  *  * 16

o3x3x3o4s

demi( . . . . . ) | 480 |   2   2   1 |   1   4   1   2   2 |  2  2  1  1  4 |  1  2  2
------------------+-----+-------------+---------------------+----------------+---------
demi( . x . . . ) |   2 | 480   *   * |   1   2   0   1   0 |  2  1  1  0  2 |  1  1  2
demi( . . x . . ) |   2 |   * 480   * |   0   2   1   0   1 |  1  2  0  1  2 |  1  2  1
      . . . o4s   |   2 |   *   * 240 |   0   0   0   2   2 |  0  0  1  1  4 |  0  2  2
------------------+-----+-------------+---------------------+----------------+---------
demi( o3x . . . ) |   3 |   3   0   0 | 160   *   *   *   * |  2  0  1  0  0 |  1  0  2
demi( . x3x . . ) |   6 |   3   3   0 |   * 320   *   *   * |  1  1  0  0  1 |  1  1  1
demi( . . x3o . ) |   3 |   0   3   0 |   *   * 160   *   * |  0  2  0  1  0 |  1  2  0
      . x 2 o4s   |   4 |   2   0   2 |   *   *   * 240   * |  0  0  1  0  2 |  0  1  2
sefa( . . x3o4s ) |   6 |   0   3   3 |   *   *   *   * 160 |  0  0  0  1  2 |  0  2  1
------------------+-----+-------------+---------------------+----------------+---------
demi( o3x3x . . )   12 |  12   6   0 |   4   4   0   0   0 | 80  *  *  *  * |  1  0  1
demi( . x3x3o . )   12 |   6  12   0 |   0   4   4   0   0 |  * 80  *  *  * |  1  1  0
      o3x 2 o4s      6 |   6   0   3 |   2   0   0   3   0 |  *  * 80  *  * |  0  0  2
      . . x3o4s     12 |   0  12   6 |   0   0   4   0   4 |  *  *  * 40  * |  0  2  0
sefa( . x3x3o4s )   24 |  12  12  12 |   0   4   0   6   4 |  *  *  *  * 80 |  0  1  1
------------------+-----+-------------+---------------------+----------------+---------
demi( o3x3x3o . )   30 |  30  30   0 |  10  20  10   0   0 |  5  5  0  0  0 | 16  *  *
      . x3x3o4s     96 |  48  96  48 |   0  32  32  24  32 |  0  8  0  8  8 |  * 10  *
sefa( o3x3x3o4s )   60 |  60  30  30 |  20  20   0  30  10 |  5  0 10  0  5 |  *  * 16

starting figure: o3x3x3o4x

© 2004-2024
top of page