Acronym | girhax |
Name |
great rhombated hemihexeract, cantitruncated demihexeract, runcicantic hexeract |
Circumradius | sqrt(43)/2 = 3.278719 |
Coordinates | (5/sqrt(8), 5/sqrt(8), 5/sqrt(8), 3/sqrt(8), 1/sqrt(8), 1/sqrt(8)) & all permutations, all even changes of sign |
Face vector | 1920, 5760, 6560, 3520, 876, 76 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x3x3o *b3x3o3o . . . . . . | 1920 | 1 2 3 | 2 3 1 6 3 | 1 6 3 3 6 1 | 3 6 1 3 2 | 3 2 1 ---------------+------+---------------+------------------------+-------------------------+--------------------+--------- x . . . . . | 2 | 960 * * | 2 3 0 0 0 | 1 6 3 0 0 0 | 3 6 1 0 0 | 3 2 0 . x . . . . | 2 | * 1920 * | 1 0 1 3 0 | 1 3 0 3 3 0 | 3 3 0 3 1 | 3 1 1 . . . x . . | 2 | * * 2880 | 0 1 0 2 2 | 0 2 2 1 4 1 | 1 4 1 2 2 | 2 2 1 ---------------+------+---------------+------------------------+-------------------------+--------------------+--------- x3x . . . . | 6 | 3 3 0 | 640 * * * * | 1 3 0 0 0 0 | 3 3 0 0 0 | 3 1 0 x . . x . . | 4 | 2 0 2 | * 1440 * * * | 0 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0 . x3o . . . | 3 | 0 3 0 | * * 640 * * | 1 0 0 3 0 0 | 3 0 0 3 0 | 3 0 1 . x . *b3x . . | 6 | 0 3 3 | * * * 1920 * | 0 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1 . . . x3o . | 3 | 0 0 3 | * * * * 1920 | 0 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1 ---------------+------+---------------+------------------------+-------------------------+--------------------+--------- x3x3o . . . ♦ 12 | 6 12 0 | 4 0 4 0 0 | 160 * * * * * | 3 0 0 0 0 | 3 0 0 x3x . *b3x . . ♦ 24 | 12 12 12 | 4 6 0 4 0 | * 480 * * * * | 1 2 0 0 0 | 2 1 0 x . . x3o . ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 960 * * * | 0 2 1 0 0 | 1 2 0 . x3o *b3x . . ♦ 12 | 0 12 6 | 0 0 4 4 0 | * * * 480 * * | 1 0 0 2 0 | 2 0 1 . x . *b3x3o . ♦ 12 | 0 6 12 | 0 0 0 4 4 | * * * * 960 * | 0 1 0 1 1 | 1 1 1 . . . x3o3o ♦ 4 | 0 0 6 | 0 0 0 0 4 | * * * * * 480 | 0 0 1 0 2 | 0 2 1 ---------------+------+---------------+------------------------+-------------------------+--------------------+--------- x3x3o *b3x . . ♦ 96 | 48 96 48 | 32 24 32 32 0 | 8 8 0 8 0 0 | 60 * * * * | 2 0 0 x3x . *b3x3o . ♦ 60 | 30 30 60 | 10 30 0 20 20 | 0 5 10 0 5 0 | * 192 * * * | 1 1 0 x . . x3o3o ♦ 8 | 4 0 12 | 0 6 0 0 8 | 0 0 4 0 0 2 | * * 240 * * | 0 2 0 . x3o *b3x3o . ♦ 30 | 0 30 30 | 0 0 10 20 10 | 0 0 0 5 5 0 | * * * 192 * | 1 0 1 . x . *b3x3o3o ♦ 20 | 0 10 30 | 0 0 0 10 20 | 0 0 0 0 5 5 | * * * * 192 | 0 1 1 ---------------+------+---------------+------------------------+-------------------------+--------------------+--------- x3x3o *b3x3o . ♦ 480 | 240 480 480 | 160 240 160 320 160 | 40 80 80 80 80 0 | 10 16 0 16 0 | 12 * * x3x . *b3x3o3o ♦ 120 | 60 60 180 | 20 90 0 60 120 | 0 15 60 0 30 30 | 0 6 15 0 6 | * 32 * . x3o *b3x3o3o ♦ 60 | 0 60 90 | 0 0 20 60 60 | 0 0 0 15 30 15 | 0 0 0 6 6 | * * 32
o3o3x3x3o4s demi( . . . . . . ) | 1920 | 3 2 1 | 3 6 1 3 2 | 1 6 3 3 1 6 | 2 3 1 3 6 | 1 3 2 --------------------+------+---------------+------------------------+-------------------------+--------------------+--------- demi( . . x . . . ) | 2 | 2880 * * | 2 2 0 1 0 | 1 4 1 2 0 2 | 2 2 1 1 4 | 1 2 2 demi( . . . x . . ) | 2 | * 1920 * | 0 3 1 0 1 | 0 3 3 0 1 3 | 1 3 0 3 3 | 1 3 1 . . . . o4s | 2 | * * 960 | 0 0 0 3 2 | 0 0 0 3 1 6 | 0 0 1 3 6 | 0 3 2 --------------------+------+---------------+------------------------+-------------------------+--------------------+--------- demi( . o3x . . . ) | 3 | 3 0 0 | 1920 * * * * | 1 2 0 2 0 0 | 2 1 1 0 2 | 1 1 2 demi( . . x3x . . ) | 6 | 3 3 0 | * 1920 * * * | 0 2 1 0 0 1 | 1 2 0 1 2 | 1 2 1 demi( . . . x3o . ) | 3 | 0 3 0 | * * 640 * * | 0 0 3 0 1 0 | 0 3 0 3 0 | 1 3 0 . . x 2 o4s | 4 | 2 0 2 | * * * 1440 * | 0 0 0 2 0 2 | 0 0 1 1 4 | 0 2 2 sefa( . . . x3o4s ) | 6 | 0 3 3 | * * * * 640 | 0 0 0 0 1 3 | 0 0 0 3 3 | 0 3 1 --------------------+------+---------------+------------------------+-------------------------+--------------------+--------- demi( o3o3x . . . ) ♦ 4 | 6 0 0 | 4 0 0 0 0 | 480 * * * * * | 2 0 1 0 0 | 1 0 2 demi( . o3x3x . . ) ♦ 12 | 12 6 0 | 4 4 0 0 0 | * 960 * * * * | 1 1 0 0 1 | 1 1 1 demi( . . x3x3o . ) ♦ 12 | 6 12 0 | 0 4 4 0 0 | * * 480 * * * | 0 2 0 1 0 | 1 2 0 . o3x 2 o4s ♦ 6 | 6 0 3 | 2 0 0 3 0 | * * * 960 * * | 0 0 1 0 2 | 0 1 2 . . . x3o4s ♦ 12 | 0 12 6 | 0 0 4 0 4 | * * * * 160 * | 0 0 0 3 0 | 0 3 0 sefa( . . x3x3o4s ) ♦ 24 | 12 12 12 | 0 4 0 6 4 | * * * * * 480 | 0 0 0 1 2 | 0 2 1 --------------------+------+---------------+------------------------+-------------------------+--------------------+--------- demi( o3o3x3x . . ) ♦ 20 | 30 10 0 | 20 10 0 0 0 | 5 5 0 0 0 0 | 192 * * * * | 1 0 1 demi( . o3x3x3o . ) ♦ 30 | 30 30 0 | 10 20 10 0 0 | 0 5 5 0 0 0 | * 192 * * * | 1 1 0 o3o3x 2 o4s ♦ 8 | 12 0 4 | 8 0 0 6 0 | 2 0 0 4 0 0 | * * 240 * * | 0 0 2 . . x3x3o4s ♦ 96 | 48 96 48 | 0 32 32 24 32 | 0 0 8 0 8 8 | * * * 60 * | 0 2 0 sefa( . o3x3x3o4s ) ♦ 60 | 60 30 30 | 20 20 0 30 10 | 0 5 0 10 0 5 | * * * * 192 | 0 1 1 --------------------+------+---------------+------------------------+-------------------------+--------------------+--------- demi( o3o3x3x3o . ) ♦ 60 | 90 60 0 | 60 60 20 0 0 | 15 30 15 0 0 0 | 6 6 0 0 0 | 32 * * . o3x3x3o4s ♦ 480 | 480 480 240 | 160 320 160 240 160 | 0 80 80 80 40 80 | 0 16 0 10 16 | * 12 * sefa( o3o3x3x3o4s ) ♦ 120 | 180 60 60 | 120 60 0 90 20 | 30 30 0 60 0 15 | 6 0 15 0 6 | * * 32 starting figure: o3o3x3x3o4x
© 2004-2025 | top of page |