Acronym giddic
Name great distetracontoctachoron
Cross sections
 ©
Circumradius sqrt[2-sqrt(2)] = 0.765367
General of army spic
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: groh oct quith trip
girc 48000
giddic 048480
quippic 0480192
& others)
External
links
hedrondude   WikiChoron  

As abstract polytope giddic is isomorphic to siddic, thereby replacing octagrams by octagons, and thus quith by tic.


Incidence matrix according to Dynkin symbol

x3o4o3x4/3*a

. . . .      | 144 |   4   4 |   4   8   4 |  1  4  4  1
-------------+-----+---------+-------------+------------
x . . .      |   2 | 288   * |   2   2   0 |  1  2  1  0
. . . x      |   2 |   * 288 |   0   2   2 |  0  1  2  1
-------------+-----+---------+-------------+------------
x3o . .      |   3 |   3   0 | 192   *   * |  1  1  0  0
x . . x4/3*a |   8 |   4   4 |   * 144   * |  0  1  1  0
. . o3x      |   3 |   0   3 |   *   * 192 |  0  0  1  1
-------------+-----+---------+-------------+------------
x3o4o .         6 |  12   0 |   8   0   0 | 24  *  *  *
x3o . x4/3*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x . o3x4/3*a   24 |  12  24 |   0   6   8 |  *  * 24  *
. o4o3x         6 |   0  12 |   0   0   8 |  *  *  * 24
or
. . . .         | 144 |   8 |   8   8 |  2  8
----------------+-----+-----+---------+------
x . . .       & |   2 | 576 |   2   2 |  1  3
----------------+-----+-----+---------+------
x3o . .       & |   3 |   3 | 384   * |  1  1
x . . x4/3*a    |   8 |   8 |   * 144 |  0  2
----------------+-----+-----+---------+------
x3o4o .       &    6 |  12 |   8   0 | 48  *
x3o . x4/3*a  &   24 |  36 |   8   6 |  * 48

x3o4/3o3/2x4/3*a

. .   .   .      | 144 |   4   4 |   4   8   4 |  1  4  4  1
-----------------+-----+---------+-------------+------------
x .   .   .      |   2 | 288   * |   2   2   0 |  1  2  1  0
. .   .   x      |   2 |   * 288 |   0   2   2 |  0  1  2  1
-----------------+-----+---------+-------------+------------
x3o   .   .      |   3 |   3   0 | 192   *   * |  1  1  0  0
x .   .   x4/3*a |   8 |   4   4 |   * 144   * |  0  1  1  0
. .   o3/2x      |   3 |   0   3 |   *   * 192 |  0  0  1  1
-----------------+-----+---------+-------------+------------
x3o4/3o   .         6 |  12   0 |   8   0   0 | 24  *  *  *
x3o   .   x4/3*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x .   o3/2x4/3*a   24 |  12  24 |   0   6   8 |  *  * 24  *
. o4/3o3/2x         6 |   0  12 |   0   0   8 |  *  *  * 24

x3/2o4o3/2x4/3*a

.   . .   .      | 144 |   4   4 |   4   8   4 |  1  4  4  1
-----------------+-----+---------+-------------+------------
x   . .   .      |   2 | 288   * |   2   2   0 |  1  2  1  0
.   . .   x      |   2 |   * 288 |   0   2   2 |  0  1  2  1
-----------------+-----+---------+-------------+------------
x3/2o .   .      |   3 |   3   0 | 192   *   * |  1  1  0  0
x   . .   x4/3*a |   8 |   4   4 |   * 144   * |  0  1  1  0
.   . o3/2x      |   3 |   0   3 |   *   * 192 |  0  0  1  1
-----------------+-----+---------+-------------+------------
x3/2o4o   .         6 |  12   0 |   8   0   0 | 24  *  *  *
x3/2o .   x4/3*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x   . o3/2x4/3*a   24 |  12  24 |   0   6   8 |  *  * 24  *
.   o4o3/2x         6 |   0  12 |   0   0   8 |  *  *  * 24
or
.   . .   .         | 144 |   8 |   8   8 |  2  8
--------------------+-----+-----+---------+------
x   . .   .       & |   2 | 576 |   2   2 |  1  3
--------------------+-----+-----+---------+------
x3/2o .   .       & |   3 |   3 | 384   * |  1  1
x   . .   x4/3*a    |   8 |   8 |   * 144 |  0  2
--------------------+-----+-----+---------+------
x3/2o4o   .       &    6 |  12 |   8   0 | 48  *
x3/2o .   x4/3*a  &   24 |  36 |   8   6 |  * 48

© 2004-2019
top of page