Acronym giddic
Name great distetracontoctachoron
Cross sections
 ©
Circumradius sqrt[2-sqrt(2)] = 0.765367
Coordinates
  1. (0, 0, sqrt(2)/2, (2-sqrt(2))/2)                   & all permutations, all changes of sign
  2. (1/2, 1/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2)       & all permutations, all changes of sign
    (vertex inscribed qrit)
General of army spic
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: groh oct quith trip
girc 48000
giddic 048480
quippic 0480192
& others)
Face vector 144, 576, 528, 96
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron  

As abstract polytope giddic is isomorphic to siddic, thereby replacing octagrams by octagons, and thus quith by tic.


Incidence matrix according to Dynkin symbol

x3o4o3x4/3*a

. . . .      | 144 |   4   4 |   4   8   4 |  1  4  4  1
-------------+-----+---------+-------------+------------
x . . .      |   2 | 288   * |   2   2   0 |  1  2  1  0
. . . x      |   2 |   * 288 |   0   2   2 |  0  1  2  1
-------------+-----+---------+-------------+------------
x3o . .      |   3 |   3   0 | 192   *   * |  1  1  0  0
x . . x4/3*a |   8 |   4   4 |   * 144   * |  0  1  1  0
. . o3x      |   3 |   0   3 |   *   * 192 |  0  0  1  1
-------------+-----+---------+-------------+------------
x3o4o .         6 |  12   0 |   8   0   0 | 24  *  *  *
x3o . x4/3*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x . o3x4/3*a   24 |  12  24 |   0   6   8 |  *  * 24  *
. o4o3x         6 |   0  12 |   0   0   8 |  *  *  * 24
or
. . . .         | 144 |   8 |   8   8 |  2  8
----------------+-----+-----+---------+------
x . . .       & |   2 | 576 |   2   2 |  1  3
----------------+-----+-----+---------+------
x3o . .       & |   3 |   3 | 384   * |  1  1
x . . x4/3*a    |   8 |   8 |   * 144 |  0  2
----------------+-----+-----+---------+------
x3o4o .       &    6 |  12 |   8   0 | 48  *
x3o . x4/3*a  &   24 |  36 |   8   6 |  * 48

x3o4/3o3/2x4/3*a

. .   .   .      | 144 |   4   4 |   4   8   4 |  1  4  4  1
-----------------+-----+---------+-------------+------------
x .   .   .      |   2 | 288   * |   2   2   0 |  1  2  1  0
. .   .   x      |   2 |   * 288 |   0   2   2 |  0  1  2  1
-----------------+-----+---------+-------------+------------
x3o   .   .      |   3 |   3   0 | 192   *   * |  1  1  0  0
x .   .   x4/3*a |   8 |   4   4 |   * 144   * |  0  1  1  0
. .   o3/2x      |   3 |   0   3 |   *   * 192 |  0  0  1  1
-----------------+-----+---------+-------------+------------
x3o4/3o   .         6 |  12   0 |   8   0   0 | 24  *  *  *
x3o   .   x4/3*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x .   o3/2x4/3*a   24 |  12  24 |   0   6   8 |  *  * 24  *
. o4/3o3/2x         6 |   0  12 |   0   0   8 |  *  *  * 24

x3/2o4o3/2x4/3*a

.   . .   .      | 144 |   4   4 |   4   8   4 |  1  4  4  1
-----------------+-----+---------+-------------+------------
x   . .   .      |   2 | 288   * |   2   2   0 |  1  2  1  0
.   . .   x      |   2 |   * 288 |   0   2   2 |  0  1  2  1
-----------------+-----+---------+-------------+------------
x3/2o .   .      |   3 |   3   0 | 192   *   * |  1  1  0  0
x   . .   x4/3*a |   8 |   4   4 |   * 144   * |  0  1  1  0
.   . o3/2x      |   3 |   0   3 |   *   * 192 |  0  0  1  1
-----------------+-----+---------+-------------+------------
x3/2o4o   .         6 |  12   0 |   8   0   0 | 24  *  *  *
x3/2o .   x4/3*a   24 |  24  12 |   8   6   0 |  * 24  *  *
x   . o3/2x4/3*a   24 |  12  24 |   0   6   8 |  *  * 24  *
.   o4o3/2x         6 |   0  12 |   0   0   8 |  *  *  * 24
or
.   . .   .         | 144 |   8 |   8   8 |  2  8
--------------------+-----+-----+---------+------
x   . .   .       & |   2 | 576 |   2   2 |  1  3
--------------------+-----+-----+---------+------
x3/2o .   .       & |   3 |   3 | 384   * |  1  1
x   . .   x4/3*a    |   8 |   8 |   * 144 |  0  2
--------------------+-----+-----+---------+------
x3/2o4o   .       &    6 |  12 |   8   0 | 48  *
x3/2o .   x4/3*a  &   24 |  36 |   8   6 |  * 48

© 2004-2024
top of page