Acronym | siddic |
Name | small distetracontoctachoron |
Cross sections |
© |
Circumradius | sqrt[2+sqrt(2)] = 1.847759 |
Coordinates |
|
General of army | spic |
Colonel of regiment | spic |
Face vector | 144, 576, 528, 96 |
Confer |
|
External links |
As abstract polytope siddic is isomorphic to giddic, thereby replacing octagons by octagrams, and thus tic by quith. – As such siddic is a lieutenant.
Incidence matrix according to Dynkin symbol
x3o4o3/2x4*a . . . . | 144 | 4 4 | 4 8 4 | 1 4 4 1 -------------+-----+---------+-------------+------------ x . . . | 2 | 288 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 288 | 0 2 2 | 0 1 2 1 -------------+-----+---------+-------------+------------ x3o . . | 3 | 3 0 | 192 * * | 1 1 0 0 x . . x4*a | 8 | 4 4 | * 144 * | 0 1 1 0 . . o3/2x | 3 | 0 3 | * * 192 | 0 0 1 1 -------------+-----+---------+-------------+------------ x3o4o . ♦ 6 | 12 0 | 8 0 0 | 24 * * * x3o . x4*a ♦ 24 | 24 12 | 8 6 0 | * 24 * * x . o3/2x4*a ♦ 24 | 12 24 | 0 6 8 | * * 24 * . o4o3/2x ♦ 6 | 0 12 | 0 0 8 | * * * 24
x3o4/3o3x4*a . . . . | 144 | 4 4 | 4 8 4 | 1 4 4 1 -------------+-----+---------+-------------+------------ x . . . | 2 | 288 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 288 | 0 2 2 | 0 1 2 1 -------------+-----+---------+-------------+------------ x3o . . | 3 | 3 0 | 192 * * | 1 1 0 0 x . . x4*a | 8 | 4 4 | * 144 * | 0 1 1 0 . . o3x | 3 | 0 3 | * * 192 | 0 0 1 1 -------------+-----+---------+-------------+------------ x3o4/3o . ♦ 6 | 12 0 | 8 0 0 | 24 * * * x3o . x4*a ♦ 24 | 24 12 | 8 6 0 | * 24 * * x . o3x4*a ♦ 24 | 12 24 | 0 6 8 | * * 24 * . o4/3o3x ♦ 6 | 0 12 | 0 0 8 | * * * 24
or . . . . | 144 | 8 | 8 8 | 2 8 ----------------+-----+-----+---------+------ x . . . & | 2 | 576 | 2 2 | 1 3 ----------------+-----+-----+---------+------ x3o . . & | 3 | 3 | 384 * | 1 1 x . . x4*a | 8 | 8 | * 144 | 0 2 ----------------+-----+-----+---------+------ x3o4/3o . & ♦ 6 | 12 | 8 0 | 48 * x3o . x4*a & ♦ 24 | 36 | 8 6 | * 48
x3/2o4/3o3/2x4*a . . . . | 144 | 4 4 | 4 8 4 | 1 4 4 1 -----------------+-----+---------+-------------+------------ x . . . | 2 | 288 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 288 | 0 2 2 | 0 1 2 1 -----------------+-----+---------+-------------+------------ x3/2o . . | 3 | 3 0 | 192 * * | 1 1 0 0 x . . x4*a | 8 | 4 4 | * 144 * | 0 1 1 0 . . o3/2x | 3 | 0 3 | * * 192 | 0 0 1 1 -----------------+-----+---------+-------------+------------ x3/2o4/3o . ♦ 6 | 12 0 | 8 0 0 | 24 * * * x3/2o . x4*a ♦ 24 | 24 12 | 8 6 0 | * 24 * * x . o3/2x4*a ♦ 24 | 12 24 | 0 6 8 | * * 24 * . o4/3o3/2x ♦ 6 | 0 12 | 0 0 8 | * * * 24
or . . . . | 144 | 8 | 8 8 | 2 8 --------------------+-----+-----+---------+------ x . . . & | 2 | 576 | 2 2 | 1 3 --------------------+-----+-----+---------+------ x3/2o . . & | 3 | 3 | 384 * | 1 1 x . . x4*a | 8 | 8 | * 144 | 0 2 --------------------+-----+-----+---------+------ x3/2o4/3o . & ♦ 6 | 12 | 8 0 | 48 * x3/2o . x4*a & ♦ 24 | 36 | 8 6 | * 48
© 2004-2024 | top of page |