Acronym quippic
Name quasiprismatotetracontoctachoron
Cross sections
 ©
Circumradius sqrt[2-sqrt(2)] = 0.765367
Colonel of regiment giddic
Face vector 144, 576, 672, 240
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope quippic is isomorphic to spic, thereby replacing inverted oct by prograde oct resp. a frustrum vertex figure by an antipodium one. – As such quippic is a lieutenant.


Incidence matrix according to Dynkin symbol

x3o4/3o3x

. .   . . | 144 |   4   4 |   4   8   4 |  1  4  4  1
----------+-----+---------+-------------+------------
x .   . . |   2 | 288   * |   2   2   0 |  1  2  1  0
. .   . x |   2 |   * 288 |   0   2   2 |  0  1  2  1
----------+-----+---------+-------------+------------
x3o   . . |   3 |   3   0 | 192   *   * |  1  1  0  0
x .   . x |   4 |   2   2 |   * 288   * |  0  1  1  0
. .   o3x |   3 |   0   3 |   *   * 192 |  0  0  1  1
----------+-----+---------+-------------+------------
x3o4/3o .    6 |  12   0 |   8   0   0 | 24  *  *  *
x3o   . x    6 |   6   3 |   2   3   0 |  * 96  *  *
x .   o3x    6 |   3   6 |   0   3   2 |  *  * 96  *
. o4/3o3x    6 |   0  12 |   0   0   8 |  *  *  * 24
or
. .   . .    | 144 |   8 |   8   8 |  2   8
-------------+-----+-----+---------+-------
x .   . .  & |   2 | 576 |   2   2 |  1   3
-------------+-----+-----+---------+-------
x3o   . .  & |   3 |   3 | 384   * |  1   1
x .   . x    |   4 |   4 |   * 288 |  0   2
-------------+-----+-----+---------+-------
x3o4/3o .  &    6 |  12 |   8   0 | 48   *
x3o   . x  &    6 |   9 |   2   3 |  * 192

x3o4o3/2x

. . .   . | 144 |   4   4 |   4   8   4 |  1  4  4  1
----------+-----+---------+-------------+------------
x . .   . |   2 | 288   * |   2   2   0 |  1  2  1  0
. . .   x |   2 |   * 288 |   0   2   2 |  0  1  2  1
----------+-----+---------+-------------+------------
x3o .   . |   3 |   3   0 | 192   *   * |  1  1  0  0
x . .   x |   4 |   2   2 |   * 288   * |  0  1  1  0
. . o3/2x |   3 |   0   3 |   *   * 192 |  0  0  1  1
----------+-----+---------+-------------+------------
x3o4o   .    6 |  12   0 |   8   0   0 | 24  *  *  *
x3o .   x    6 |   6   3 |   2   3   0 |  * 96  *  *
x . o3/2x    6 |   3   6 |   0   3   2 |  *  * 96  *
. o4o3/2x    6 |   0  12 |   0   0   8 |  *  *  * 24

x3/2o4/3o3/2x

.   .   .   . | 144 |   4   4 |   4   8   4 |  1  4  4  1
--------------+-----+---------+-------------+------------
x   .   .   . |   2 | 288   * |   2   2   0 |  1  2  1  0
.   .   .   x |   2 |   * 288 |   0   2   2 |  0  1  2  1
--------------+-----+---------+-------------+------------
x3/2o   .   . |   3 |   3   0 | 192   *   * |  1  1  0  0
x   .   .   x |   4 |   2   2 |   * 288   * |  0  1  1  0
.   .   o3/2x |   3 |   0   3 |   *   * 192 |  0  0  1  1
--------------+-----+---------+-------------+------------
x3/2o4/3o   .    6 |  12   0 |   8   0   0 | 24  *  *  *
x3/2o   .   x    6 |   6   3 |   2   3   0 |  * 96  *  *
x   .   o3/2x    6 |   3   6 |   0   3   2 |  *  * 96  *
.   o4/3o3/2x    6 |   0  12 |   0   0   8 |  *  *  * 24

© 2004-2025
top of page