Acronym ditdidap Name ditrigonary-dodecadodecahedron antiprism Cross sections ` ©` Circumradius sqrt[(5+sqrt(5))/8] = 0.951057 Colonel of regiment sidtidap Confer general polytopal classes: segmentochora Externallinks

As abstract polytope ditdidap is automorph, thereby interchanging the roles of pentagrams and pentagons, resp. of stap and pap

It occurs as the blend of sidtidap and gidtidap, blending out all their lacing tets.

Incidence matrix

```ditdid || gyro ditdid   → height = sqrt[(sqrt(5)-1)/2] = 0.786151

20  * |  6  3  0 |  3  3  6  3  0  0 | 1  3  3 0
* 20 |  0  3  6 |  0  0  3  6  3  3 | 0  3  3 1
------+----------+-------------------+----------
2  0 | 60  *  * |  1  1  1  0  0  0 | 1  1  1 0
1  1 |  * 60  * |  0  0  2  2  0  0 | 0  2  2 0
0  2 |  *  * 60 |  0  0  0  1  1  1 | 0  1  1 1
------+----------+-------------------+-----------
5  0 |  5  0  0 | 12  *  *  *  *  * | 1  1  0 0  {5}
5  0 |  5  0  0 |  * 12  *  *  *  * | 1  0  1 0  {5/2}
2  1 |  1  2  0 |  *  * 60  *  *  * | 0  1  1 0
1  2 |  0  2  1 |  *  *  * 60  *  * | 0  1  1 0
0  5 |  0  0  5 |  *  *  *  * 12  * | 0  1  0 1  {5}
0  5 |  0  0  5 |  *  *  *  *  * 12 | 0  0  1 1  {5/2}
------+----------+-------------------+----------
20  0 | 60  0  0 | 12 12  0  0  0  0 | 1  *  * *  ditdid
5  5 |  5 10  5 |  1  0  5  5  1  0 | * 12  * *  pap
5  5 |  5 10  5 |  0  1  5  5  0  1 | *  * 12 *  stap
0 20 |  0  0 60 |  0  0  0  0 12 12 | *  *  * 1  ditdid
```
```or
40 |   6  3 |  3  3   9 | 1  3  3
---+--------+-----------+--------
2 | 120  * |  1  1   1 | 1  1  1
2 |   * 60 |  0  0   4 | 0  2  2
---+--------+-----------+--------
5 |   5  0 | 24  *   * | 1  1  0  {5}
5 |   5  0 |  * 24   * | 1  0  1  {5/2}
3 |   1  2 |  *  * 120 | 0  1  1
---+--------+-----------+--------
20 |  60  0 | 12 12   0 | 2  *  *  ditdid
10 |  10 10 |  2  0  10 | * 12  *  pap
10 |  10 10 |  0  2  10 | *  * 12  stap
```