Acronym cophix
Name small celliprismated hemihexeract,
steriruncinated demihexeract, pentisteric hexeract
Circumradius sqrt(19)/2 = 2.179449
Coordinates (5/sqrt(8), 3/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8))     & all permutations, all even changes of sign
Face vector 960, 5280, 10720, 9120, 3016, 296
Confer
general polytopal classes:
Wythoffian polypeta   lace simplices  
External
links
wikipedia   polytopewiki  

Incidence matrix according to Dynkin symbol

x3o3o *b3o3x3x

o3o3o *b3o3o3o | 960 |    6    4   1 |   12   12    6    6   4 |   4   4   12   12   6  12   4   6 |   1   4   4   4   4  12   6   1   4 |  1  1   4  4  1
---------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
x . .    . . . |   2 | 2880    *   * |    4    2    1    0   0 |   2   2    4    4   1   2   0   0 |   1   2   2   2   2   4   1   0   0 |  1  1   2  2  0
. . .    . x . |   2 |    * 1920   * |    0    3    0    3   1 |   0   0    3    0   3   3   3   3 |   0   1   0   3   0   3   3   1   3 |  1  0   1  3  1
. . .    . . x |   2 |    *    * 480 |    0    0    6    0   4 |   0   0    0   12   0  12   0   6 |   0   0   4   0   4  12   6   0   4 |  0  1   4  4  1
---------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
x3o .    . . . |   3 |    3    0   0 | 3840    *    *    *   * |   1   1    1    1   0   0   0   0 |   1   1   1   1   1   1   0   0   0 |  1  1   1  1  0
x . .    . x . |   4 |    2    2   0 |    * 2880    *    *   * |   0   0    2    0   1   1   0   0 |   0   1   0   2   0   2   1   0   0 |  1  0   1  2  0
x . .    . . x |   4 |    2    0   2 |    *    * 1440    *   * |   0   0    0    4   0   2   0   0 |   0   0   2   0   2   4   1   0   0 |  0  1   2  2  0
. . .    o3x . |   3 |    0    3   0 |    *    *    * 1920   * |   0   0    0    0   1   0   2   1 |   0   0   0   2   0   0   1   1   2 |  1  0   0  2  1
. . .    . x3x |   6 |    0    3   3 |    *    *    *    * 640 |   0   0    0    0   0   3   0   3 |   0   0   0   0   0   3   3   0   3 |  0  0   1  3  1
---------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
x3o3o    . . .    4 |    6    0   0 |    4    0    0    0   0 | 960   *    *    *   *   *   *   * |   1   1   1   0   0   0   0   0   0 |  1  1   1  0  0
x3o . *b3o . .    4 |    6    0   0 |    4    0    0    0   0 |   * 960    *    *   *   *   *   * |   1   0   0   1   1   0   0   0   0 |  1  1   0  1  0
x3o .    . x .    6 |    6    3   0 |    2    3    0    0   0 |   *   * 1920    *   *   *   *   * |   0   1   0   1   0   1   0   0   0 |  1  0   1  1  0
x3o .    . . x    6 |    6    0   3 |    2    0    3    0   0 |   *   *    * 1920   *   *   *   * |   0   0   1   0   1   1   0   0   0 |  0  1   1  1  0
x . .    o3x .    6 |    3    6   0 |    0    3    0    2   0 |   *   *    *    * 960   *   *   * |   0   0   0   2   0   0   1   0   0 |  1  0   0  2  0
x . .    . x3x   12 |    6    6   6 |    0    3    3    0   2 |   *   *    *    *   * 960   *   * |   0   0   0   0   0   2   1   0   0 |  0  0   1  2  0
. o . *b3o3x .    4 |    0    6   0 |    0    0    0    4   0 |   *   *    *    *   *   * 960   * |   0   0   0   1   0   0   0   1   1 |  1  0   0  1  1
. . .    o3x3x   12 |    0   12   6 |    0    0    0    4   4 |   *   *    *    *   *   *   * 480 |   0   0   0   0   0   0   1   0   2 |  0  0   0  2  1
---------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
x3o3o *b3o . .    8 |   24    0   0 |   32    0    0    0   0 |   8   8    0    0   0   0   0   0 | 120   *   *   *   *   *   *   *   * |  1  1   0  0  0
x3o3o    . x .    8 |   12    4   0 |    8    6    0    0   0 |   2   0    4    0   0   0   0   0 |   * 480   *   *   *   *   *   *   * |  1  0   1  0  0
x3o3o    . . x    8 |   12    0   4 |    8    0    6    0   0 |   2   0    0    4   0   0   0   0 |   *   * 480   *   *   *   *   *   * |  0  1   1  0  0
x3o . *b3o3x .   20 |   30   30   0 |   20   30    0   20   0 |   0   5   10    0  10   0   5   0 |   *   *   * 192   *   *   *   *   * |  1  0   0  1  0
x3o . *b3o . x    8 |   12    0   4 |    8    0    6    0   0 |   0   2    0    4   0   0   0   0 |   *   *   *   * 480   *   *   *   * |  0  1   0  1  0
x3o .    . x3x   18 |   18    9   9 |    6    9    9    0   3 |   0   0    3    3   0   3   0   0 |   *   *   *   *   * 640   *   *   * |  0  0   1  1  0
x . .    o3x3x   24 |   12   24  12 |    0   12    6    8   8 |   0   0    0    0   4   4   0   2 |   *   *   *   *   *   * 240   *   * |  0  0   0  2  0
. o3o *b3o3x .    5 |    0   10   0 |    0    0    0   10   0 |   0   0    0    0   0   0   5   0 |   *   *   *   *   *   *   * 192   * |  1  0   0  0  1
. o . *b3o3x3x   20 |    0   30  10 |    0    0    0   20  10 |   0   0    0    0   0   0   5   5 |   *   *   *   *   *   *   *   * 192 |  0  0   0  1  1
---------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
x3o3o *b3o3x .   80 |  240  160   0 |  320  240    0  160   0 |  80  80  160    0  80   0  80   0 |  10  40   0  16   0   0   0  16   0 | 12  *   *  *  *
x3o3o *b3o . x   16 |   48    0   8 |   64    0   24    0   0 |  16  16    0   32   0   0   0   0 |   2   0   8   0   8   0   0   0   0 |  * 60   *  *  *
x3o3o    . x3x   24 |   36   12  12 |   24   18   18    0   4 |   6   0   12   12   0   6   0   0 |   0   3   3   0   0   4   0   0   0 |  *  * 160  *  *
x3o . *b3o3x3x  120 |  180  180  60 |  120  180   90  120  60 |   0  30   60   60  60  60  30  30 |   0   0   0   6  15  20  15   0   6 |  *  *   * 32  *
. o3o *b3o3x3x   30 |    0   60  15 |    0    0    0   60  20 |   0   0    0    0   0   0  30  15 |   0   0   0   0   0   0   0   6   6 |  *  *   *  * 32

x3x3o3o3o4s

demi( . . . . . . ) | 960 |   1    4    6 |   4    6    6   12   12 |   6   4  12   6   4   12   12   4 |   4   1   6   4   4   1  12   4   4 |  1   4  1  1  4
--------------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
demi( x . . . . . ) |   2 | 480    *    * |   4    0    6    0    0 |   6   0  12   0   0   12    0   0 |   4   0   6   4   0   0  12   4   0 |  1   4  1  0  4
demi( . x . . . . ) |   2 |   * 1920    * |   1    3    0    3    0 |   3   3   3   3   0    0    3   0 |   3   1   3   0   1   0   3   0   3 |  1   1  0  1  3
      . . . . o4s   |   2 |   *    * 2880 |   0    0    1    2    4 |   0   0   2   1   2    4    4   2 |   0   0   1   2   2   1   4   2   2 |  0   2  1  1  2
--------------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
demi( x3x . . . . ) |   6 |   3    3    0 | 640    *    *    *    * |   3   0   3   0   0    0    0   0 |   3   0   3   0   0   0   3   0   0 |  1   1  0  0  3
demi( . x3o . . . ) |   3 |   0    3    0 |   * 1920    *    *    * |   1   2   0   1   0    0    0   0 |   2   1   1   0   0   0   0   0   2 |  1   0  0  1  2
      x . 2 . o4s   |   4 |   2    0    2 |   *    * 1440    *    * |   0   0   2   0   0    4    0   0 |   0   0   1   2   0   0   4   2   0 |  0   2  1  0  2
      . x 2 . o4s   |   4 |   0    2    2 |   *    *    * 2880    * |   0   0   1   1   0    0    2   0 |   0   0   1   0   1   0   2   0   2 |  0   1  0  1  2
sefa( . . . o3o4s ) |   3 |   0    0    3 |   *    *    *    * 3840 |   0   0   0   0   1    1    1   1 |   0   0   0   1   1   1   1   1   1 |  0   1  1  1  1
--------------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
demi( x3x3o . . . )   12 |   6   12    0 |   4    4    0    0    0 | 480   *   *   *   *    *    *   * |   2   0   1   0   0   0   0   0   0 |  1   0  0  0  2
demi( . x3o3o . . )    4 |   0    6    0 |   0    4    0    0    0 |   * 960   *   *   *    *    *   * |   1   1   0   0   0   0   0   0   1 |  1   0  0  1  1
      x3x . 2 o4s     12 |   6    6    6 |   2    0    3    3    0 |   *   * 960   *   *    *    *   * |   0   0   1   0   0   0   2   0   0 |  0   1  0  0  2
      . x3o 2 o4s      6 |   0    6    3 |   0    2    0    3    0 |   *   *   * 960   *    *    *   * |   0   0   1   0   0   0   0   0   2 |  0   0  0  1  2
      . . . o3o4s      4 |   0    0    6 |   0    0    0    0    4 |   *   *   *   * 960    *    *   * |   0   0   0   1   1   1   0   0   0 |  0   1  1  1  0
sefa( x . 2 o3o4s )    6 |   3    0    6 |   0    0    3    0    2 |   *   *   *   *   * 1920    *   * |   0   0   0   1   0   0   1   1   0 |  0   1  1  0  1
sefa( . x 2 o3o4s )    6 |   0    3    6 |   0    0    0    3    2 |   *   *   *   *   *    * 1920   * |   0   0   0   0   1   0   1   0   1 |  0   1  0  1  1
sefa( . . o3o3o4s )    4 |   0    0    6 |   0    0    0    0    4 |   *   *   *   *   *    *    * 960 |   0   0   0   0   0   1   0   1   1 |  0   0  1  1  1
--------------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
demi( x3x3o3o . . )   20 |  10   30    0 |  10   20    0    0    0 |   5   5   0   0   0    0    0   0 | 192   *   *   *   *   *   *   *   * |  1   0  0  0  1
demi( . x3o3o3o . )    5 |   0   10    0 |   0   10    0    0    0 |   0   5   0   0   0    0    0   0 |   * 192   *   *   *   *   *   *   * |  1   0  0  1  0
      x3x3o 2 o4s     24 |  12   24   12 |   8    8    6   12    0 |   2   0   4   4   0    0    0   0 |   *   * 240   *   *   *   *   *   * |  0   0  0  0  2
      x . 2 o3o4s      8 |   4    0   12 |   0    0    6    0    8 |   0   0   0   0   2    4    0   0 |   *   *   * 480   *   *   *   *   * |  0   1  1  0  0
      . x 2 o3o4s      8 |   0    4   12 |   0    0    0    6    8 |   0   0   0   0   2    0    4   0 |   *   *   *   * 480   *   *   *   * |  0   1  0  1  0
      . . o3o3o4s      8 |   0    0   24 |   0    0    0    0   32 |   0   0   0   0   8    0    0   8 |   *   *   *   *   * 120   *   *   * |  0   0  1  1  0
sefa( x3x 2 o3o4s )   18 |   9    9   18 |   3    0    9    9    6 |   0   0   3   0   0    3    3   0 |   *   *   *   *   *   * 640   *   * |  0   1  0  0  1
sefa( x 2 o3o3o4s )    8 |   4    0   12 |   0    0    6    0    8 |   0   0   0   0   0    4    0   2 |   *   *   *   *   *   *   * 480   * |  0   0  1  0  1
sefa( . x3o3o3o4s )   20 |   0   30   30 |   0   20    0   30   20 |   0   5   0  10   0    0   10   5 |   *   *   *   *   *   *   *   * 192 |  0   0  0  1  1
--------------------+-----+---------------+-------------------------+-----------------------------------+-------------------------------------+----------------
demi( x3x3o3o3o . )   30 |  15   60    0 |  20   60    0    0    0 |  15  30   0   0   0    0    0   0 |   6   6   0   0   0   0   0   0   0 | 32   *  *  *  *
      x3x 2 o3o4s     24 |  12   12   36 |   4    0   18   18   24 |   0   0   6   0   6   12   12   0 |   0   0   0   3   3   0   4   0   0 |  * 160  *  *  *
      x 2 o3o3o4s     16 |   8    0   48 |   0    0   24    0   64 |   0   0   0   0  16   32    0  16 |   0   0   0   8   0   2   0   8   0 |  *   * 60  *  *
      . x3o3o3o4s     80 |   0  160  240 |   0  160    0  240  320 |   0  80   0  80  80    0  160  80 |   0  16   0   0  40  10   0   0  16 |  *   *  * 12  *
sefa( x3x3o3o3o4s )  120 |  60  180  180 |  60  120   90  180  120 |  30  30  60  60   0   60   60  30 |   6   0  15   0   0   0  20  15   6 |  *   *  *  * 32

starting figure: x3x3o3o3o4x

© 2004-2025
top of page