Acronym codip
Name cuboctahedron-cuboctahedron duoprism
Circumradius sqrt(2) = 1.414214

Incidence matrix according to Dynkin symbol

o3x4o o3x4o

. . . . . . | 144 |   4   4 |  2  2  16  2  2 |  1   8   8   8   8  1 |  4  4  4  4  4  4 | 2 2 2 2
------------+-----+---------+-----------------+-----------------------+-------------------+--------
. x . . . . |   2 | 288   * |  1  1   4  0  0 |  1   4   4   2   2  0 |  4  2  2  2  2  1 | 2 2 1 1
. . . . x . |   2 |   * 288 |  0  0   4  1  1 |  0   2   2   4   4  1 |  1  2  2  2  2  4 | 1 1 2 2
------------+-----+---------+-----------------+-----------------------+-------------------+--------
o3x . . . . |   3 |   3   0 | 96  *   *  *  * |  1   4   0   0   0  0 |  4  2  2  0  0  0 | 2 2 1 0
. x4o . . . |   4 |   4   0 |  * 72   *  *  * |  1   0   4   0   0  0 |  4  0  0  2  2  0 | 2 2 0 1
. x . . x . |   4 |   2   2 |  *  * 576  *  * |  0   1   1   1   1  0 |  1  1  1  1  1  1 | 1 1 1 1
. . . o3x . |   3 |   0   3 |  *  *   * 96  * |  0   0   0   4   0  1 |  0  2  0  2  0  4 | 1 0 2 2
. . . . x4o |   4 |   0   4 |  *  *   *  * 72 |  0   0   0   0   4  1 |  0  0  2  0  2  4 | 0 1 2 2
------------+-----+---------+-----------------+-----------------------+-------------------+--------
o3x4o . . .   12 |  24   0 |  8  6   0  0  0 | 12   *   *   *   *  * |  4  0  0  0  0  0 | 2 2 0 0
o3x . . x .    6 |   6   3 |  2  0   3  0  0 |  * 192   *   *   *  * |  1  1  1  0  0  0 | 1 1 1 0
. x4o . x .    8 |   8   4 |  0  2   4  0  0 |  *   * 144   *   *  * |  1  0  0  1  1  0 | 1 1 0 1
. x . o3x .    6 |   3   6 |  0  0   3  2  0 |  *   *   * 192   *  * |  0  1  0  1  0  1 | 1 0 1 1
. x . . x4o    8 |   4   8 |  0  0   4  0  2 |  *   *   *   * 144  * |  0  0  1  0  1  1 | 0 1 1 1
. . . o3x4o   12 |   0  24 |  0  0   0  8  6 |  *   *   *   *   * 12 |  0  0  0  0  0  4 | 0 0 2 2
------------+-----+---------+-----------------+-----------------------+-------------------+--------
o3x4o . x .   24 |  48  12 | 16 12  24  0  0 |  2   8   6   0   0  0 | 24  *  *  *  *  * | 1 1 0 0
o3x . o3x .    9 |   9   9 |  3  0   9  3  0 |  0   3   0   3   0  0 |  * 64  *  *  *  * | 1 0 1 0
o3x . . x4o   12 |  12  12 |  4  0  12  0  3 |  0   4   0   0   3  0 |  *  * 48  *  *  * | 0 1 1 0
. x4o o3x .   12 |  12  12 |  0  3  12  4  0 |  0   0   3   4   0  0 |  *  *  * 48  *  * | 1 0 0 1
. x4o . x4o   16 |  16  16 |  0  4  16  0  4 |  0   0   4   0   4  0 |  *  *  *  * 36  * | 0 1 0 1
. x . o3x4o   24 |  12  48 |  0  0  24 16 12 |  0   0   0   8   6  2 |  *  *  *  *  * 24 | 0 0 1 1
------------+-----+---------+-----------------+-----------------------+-------------------+--------
o3x4o o3x .   36 |  72  36 | 24 18  72 12  0 |  3  24  18  24   0  0 |  3  8  0  6  0  0 | 8 * * *
o3x4o . x4o   48 |  96  48 | 32 24  96  0 12 |  4  32  24   0  24  0 |  4  0  8  0  6  0 | * 6 * *
o3x . o3x4o   36 |  36  72 | 12  0  72 24 18 |  0  24   0  24  18  3 |  0  8  6  0  0  3 | * * 8 *
. x4o o3x4o   48 |  48  96 |  0 12  96 32 24 |  0   0  24  32  24  4 |  0  0  0  8  6  4 | * * * 6
or
. . . . . .    | 144 |   8 |   4   4  16 |  2  16  16 |  8  4  8  4 |  4  4
---------------+-----+-----+-------------+------------+-------------+------
. x . . . .  & |   2 | 576 |   1   1   4 |  1   6   6 |  5  2  4  2 |  3  3
---------------+-----+-----+-------------+------------+-------------+------
o3x . . . .  & |   3 |   3 | 192   *   * |  1   4   0 |  4  2  2  0 |  3  2
. x4o . . .  & |   4 |   4 |   * 144   * |  1   0   4 |  4  0  2  2 |  2  3
. x . . x .    |   4 |   4 |   *   * 576 |  0   2   2 |  2  1  2  1 |  2  2
---------------+-----+-----+-------------+------------+-------------+------
o3x4o . . .  &   12 |  24 |   8   6   0 | 24   *   * |  4  0  0  0 |  2  2
o3x . . x .  &    6 |   9 |   2   0   3 |  * 384   * |  1  1  1  0 |  2  1
. x4o . x .  &    8 |  12 |   0   2   4 |  *   * 288 |  1  0  1  1 |  1  2
---------------+-----+-----+-------------+------------+-------------+------
o3x4o . x .  &   24 |  60 |  16  12  24 |  2   8   6 | 48  *  *  * |  1  1
o3x . o3x .       9 |  18 |   6   0   9 |  0   6   0 |  * 64  *  * |  2  0
o3x . . x4o  &   12 |  24 |   4   3  12 |  0   4   3 |  *  * 96  * |  1  1
. x4o . x4o      16 |  32 |   0   8  16 |  0   0   8 |  *  *  * 36 |  0  2
---------------+-----+-----+-------------+------------+-------------+------
o3x4o o3x .  &   36 | 108 |  36  18  72 |  3  48  18 |  3  8  6  0 | 16  *
o3x4o . x4o  &   48 | 144 |  32  36  96 |  4  32  48 |  4  0  8  6 |  * 12

© 2004-2019
top of page