Acronym bithit
Name bitruncated hexadecachoric tetracomb,
bitruncated demitesseractic tetracomb,
runcicantic tesseractic tetracomb
Confer
general polytopal classes:
partial Stott expansions  
External
links
wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

o3x3x4o3o   (N → ∞)

. . . . . | 96N |   2    3 |   1   6   3 |   3   6   1 |  3 2
----------+-----+----------+-------------+-------------+-----
. x . . . |   2 | 96N    * |   1   3   0 |   3   3   0 |  3 1
. . x . . |   2 |   * 144N |   0   2   2 |   1   4   1 |  2 2
----------+-----+----------+-------------+-------------+-----
o3x . . . |   3 |   3    0 | 32N   *   * |   3   0   0 |  3 0
. x3x . . |   6 |   3    3 |   * 96N   * |   1   2   0 |  2 1
. . x4o . |   4 |   0    4 |   *   * 72N |   0   2   1 |  1 2
----------+-----+----------+-------------+-------------+-----
o3x3x . .   12 |  12    6 |   4   4   0 | 24N   *   * |  2 0
. x3x4o .   24 |  12   24 |   0   8   6 |   * 24N   * |  1 1
. . x4o3o    8 |   0   12 |   0   0   6 |   *   * 12N |  0 2
----------+-----+----------+-------------+-------------+-----
o3x3x4o .   96 |  96   96 |  32  64  24 |  16   8   0 | 3N *
. x3x4o3o  192 |  96  288 |   0  96 144 |   0  24  24 |  * N

s4o3x3x4o   (N → ∞)

demi( . . . . . ) | 96N |   2   2   1 |   1   4   1   2   2 |   2  2  1   1   4 | 1  2 2
------------------+-----+-------------+---------------------+-------------------+-------
demi( . . x . . ) |   2 | 96N   *   * |   1   2   0   0   1 |   2  1  1   0   2 | 1  2 1
demi( . . . x . ) |   2 |   * 96N   * |   0   2   1   1   0 |   1  2  0   1   2 | 1  1 2
      s4o . . .   |   2 |   *   * 48N |   0   0   0   2   2 |   0  0  1   1   4 | 0  2 2
------------------+-----+-------------+---------------------+-------------------+-------
demi( . o3x . . ) |   3 |   3   0   0 | 32N   *   *   *   * |   2  0  1   0   0 | 1  2 0
demi( . . x3x . ) |   6 |   3   3   0 |   * 64N   *   *   * |   1  1  0   0   1 | 1  1 1
demi( . . . x4o ) |   4 |   0   4   0 |   *   * 24N   *   * |   0  2  0   1   0 | 1  0 2
      s4o 2 x .   |   4 |   0   2   2 |   *   *   * 48N   * |   0  0  0   1   2 | 0  1 2
sefa( s4o3x . . ) |   6 |   3   0   3 |   *   *   *   * 32N |   0  0  1   0   2 | 0  2 1
------------------+-----+-------------+---------------------+-------------------+-------
demi( . o3x3x . )   12 |  12   6   0 |   4   4   0   0   0 | 16N  *  *   *   * | 1  1 0
demi( . . x3x4o )   24 |  12  24   0 |   0   8   6   0   0 |   * 8N  *   *   * | 1  0 1
      s4o3x . .     12 |  12   0   6 |   4   0   0   0   4 |   *  * 8N   *   * | 0  2 0
      s4o 2 x4o      8 |   0   8   4 |   0   0   2   4   0 |   *  *  * 12N   * | 0  0 2
sefa( s4o3x3x . )   24 |  12  12  12 |   0   4   0   6   4 |   *  *  *   * 16N | 0  1 1
------------------+-----+-------------+---------------------+-------------------+-------
demi( . o3x3x4o )   96 |  96  96   0 |  32  64  24   0   0 |  16  8  0   0   0 | N  * *
      s4o3x3x .     96 |  96  48  48 |  32  32   0  24  32 |   8  0  8   0   8 | * 2N *
sefa( s4o3x3x4o )  192 |  96 192  96 |   0  64  48  96  32 |   0  8  0  24  16 | *  * N

starting figure: x4o3x3x4o

x3x3o *b3x4o   (N → ∞)

. . .    . . | 96N |   1   2   2 |   2   2   1   4   1 |  1   4   1   2  2 |  2 2 1
-------------+-----+-------------+---------------------+-------------------+-------
x . .    . . |   2 | 48N   *   * |   2   2   0   0   0 |  1   4   1   0  0 |  2 2 0
. x .    . . |   2 |   * 96N   * |   1   0   1   2   0 |  1   2   0   2  1 |  2 1 1
. . .    x . |   2 |   *   * 96N |   0   1   0   2   1 |  0   2   1   1  2 |  1 2 1
-------------+-----+-------------+---------------------+-------------------+-------
x3x .    . . |   6 |   3   3   0 | 32N   *   *   *   * |  1   2   0   0  0 |  2 1 0
x . .    x . |   4 |   2   0   2 |   * 48N   *   *   * |  0   2   1   0  0 |  1 2 0
. x3o    . . |   3 |   0   3   0 |   *   * 32N   *   * |  1   0   0   2  0 |  2 0 1
. x . *b3x . |   6 |   0   3   3 |   *   *   * 64N   * |  0   1   0   1  1 |  1 1 1
. . .    x4o |   4 |   0   0   4 |   *   *   *   * 24N |  0   0   1   0  2 |  0 2 1
-------------+-----+-------------+---------------------+-------------------+-------
x3x3o    . .   12 |   6  12   0 |   4   0   4   0   0 | 8N   *   *   *  * |  2 0 0
x3x . *b3x .   24 |  12  12  12 |   4   6   0   4   0 |  * 16N   *   *  * |  1 1 0
x . .    x4o    8 |   4   0   8 |   0   4   0   0   2 |  *   * 12N   *  * |  0 2 0
. x3o *b3x .   12 |   0  12   6 |   0   0   4   4   0 |  *   *   * 16N  * |  1 0 1
. x . *b3x4o   24 |   0  12  24 |   0   0   0   8   6 |  *   *   *   * 8N |  0 1 1
-------------+-----+-------------+---------------------+-------------------+-------
x3x3o *b3x .   96 |  48  96  48 |  32  24  32  32   0 |  8   8   0   8  0 | 2N * *
x3x . *b3x4o  192 |  96  96 192 |  32  96   0  64  48 |  0  16  24   0  8 |  * N *
. x3o *b3x4o   96 |   0  96  96 |   0   0  32  64  24 |  0   0   0  16  8 |  * * N

x3x3x *b3x *b3o   (N → ∞)

. . .    .    . | 96N |   1   2   1   1 |   2   1   1   2   2   1   1 |  2  2  1   1  2  1  1 | 2 1 1 1
----------------+-----+-----------------+-----------------------------+-----------------------+--------
x . .    .    . |   2 | 48N   *   *   * |   2   1   1   0   0   0   0 |  2  2  1   1  0  0  0 | 2 1 1 0
. x .    .    . |   2 |   * 96N   *   * |   1   0   0   1   1   1   0 |  1  1  1   0  1  1  1 | 1 1 1 1
. . x    .    . |   2 |   *   * 48N   * |   0   1   0   2   0   0   1 |  2  0  0   1  2  1  0 | 2 1 0 1
. . .    x    . |   2 |   *   *   * 48N |   0   0   1   0   2   0   1 |  0  2  0   1  2  0  1 | 2 0 1 1
----------------+-----+-----------------+-----------------------------+-----------------------+--------
x3x .    .    . |   6 |   3   3   0   0 | 32N   *   *   *   *   *   * |  1  1  1   0  0  0  0 | 1 1 1 0
x . x    .    . |   4 |   2   0   2   0 |   * 24N   *   *   *   *   * |  2  0  0   1  0  0  0 | 2 1 0 0
x . .    x    . |   4 |   2   0   0   2 |   *   * 24N   *   *   *   * |  0  2  0   1  0  0  0 | 2 0 1 0
. x3x    .    . |   6 |   0   3   3   0 |   *   *   * 32N   *   *   * |  1  0  0   0  1  1  0 | 1 1 0 1
. x . *b3x    . |   6 |   0   3   0   3 |   *   *   *   * 32N   *   * |  0  1  0   0  1  0  1 | 1 0 1 1
. x .    . *b3o |   3 |   0   3   0   0 |   *   *   *   *   * 32N   * |  0  0  1   0  0  1  1 | 0 1 1 1
. . x    x    . |   4 |   0   0   2   2 |   *   *   *   *   *   * 24N |  0  0  0   1  2  0  0 | 2 0 0 1
----------------+-----+-----------------+-----------------------------+-----------------------+--------
x3x3x    .    .   24 |  12  12  12   0 |   4   6   0   4   0   0   0 | 8N  *  *   *  *  *  * | 1 1 0 0
x3x . *b3x    .   24 |  12  12   0  12 |   4   0   6   0   4   0   0 |  * 8N  *   *  *  *  * | 1 0 1 0
x3x .    . *b3o   12 |   6  12   0   0 |   4   0   0   0   0   4   0 |  *  * 8N   *  *  *  * | 0 1 1 0
x . x    x    .    8 |   4   0   4   4 |   0   2   2   0   0   0   2 |  *  *  * 12N  *  *  * | 2 0 0 0
. x3x *b3x    .   24 |   0  12  12  12 |   0   0   0   4   4   0   6 |  *  *  *   * 8N  *  * | 1 0 0 1
. x3x    . *b3o   12 |   0  12   6   0 |   0   0   0   4   0   4   0 |  *  *  *   *  * 8N  * | 0 1 0 1
. x . *b3x *b3o   12 |   0  12   0   6 |   0   0   0   0   4   4   0 |  *  *  *   *  *  * 8N | 0 0 1 1
----------------+-----+-----------------+-----------------------------+-----------------------+--------
x3x3x *b3x    .  192 |  96  96  96  96 |  32  48  48  32  32   0  48 |  8  8  0  24  8  0  0 | N * * *
x3x3x    . *b3o   96 |  48  96  48   0 |  32  24   0  32   0  32   0 |  8  0  8   0  0  8  0 | * N * *
x3x . *b3x *b3o   96 |  48  96   0  48 |  32   0  24   0  32  32   0 |  0  8  8   0  0  0  8 | * * N *
. x3x *b3x *b3o   96 |   0  96  48  48 |   0   0   0  32  32  32  24 |  0  0  0   0  8  8  8 | * * * N

© 2004-2025
top of page