Acronym | bithit |
Name |
bitruncated hexadecachoric tetracomb, bitruncated demitesseractic tetracomb, runcicantic tesseractic tetracomb |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
o3x3x4o3o (N → ∞) . . . . . | 96N | 2 3 | 1 6 3 | 3 6 1 | 3 2 ----------+-----+----------+-------------+-------------+----- . x . . . | 2 | 96N * | 1 3 0 | 3 3 0 | 3 1 . . x . . | 2 | * 144N | 0 2 2 | 1 4 1 | 2 2 ----------+-----+----------+-------------+-------------+----- o3x . . . | 3 | 3 0 | 32N * * | 3 0 0 | 3 0 . x3x . . | 6 | 3 3 | * 96N * | 1 2 0 | 2 1 . . x4o . | 4 | 0 4 | * * 72N | 0 2 1 | 1 2 ----------+-----+----------+-------------+-------------+----- o3x3x . . ♦ 12 | 12 6 | 4 4 0 | 24N * * | 2 0 . x3x4o . ♦ 24 | 12 24 | 0 8 6 | * 24N * | 1 1 . . x4o3o ♦ 8 | 0 12 | 0 0 6 | * * 12N | 0 2 ----------+-----+----------+-------------+-------------+----- o3x3x4o . ♦ 96 | 96 96 | 32 64 24 | 16 8 0 | 3N * . x3x4o3o ♦ 192 | 96 288 | 0 96 144 | 0 24 24 | * N
s4o3x3x4o (N → ∞) demi( . . . . . ) | 96N | 2 2 1 | 1 4 1 2 2 | 2 2 1 1 4 | 1 2 2 ------------------+-----+-------------+---------------------+-------------------+------- demi( . . x . . ) | 2 | 96N * * | 1 2 0 0 1 | 2 1 1 0 2 | 1 2 1 demi( . . . x . ) | 2 | * 96N * | 0 2 1 1 0 | 1 2 0 1 2 | 1 1 2 s4o . . . | 2 | * * 48N | 0 0 0 2 2 | 0 0 1 1 4 | 0 2 2 ------------------+-----+-------------+---------------------+-------------------+------- demi( . o3x . . ) | 3 | 3 0 0 | 32N * * * * | 2 0 1 0 0 | 1 2 0 demi( . . x3x . ) | 6 | 3 3 0 | * 64N * * * | 1 1 0 0 1 | 1 1 1 demi( . . . x4o ) | 4 | 0 4 0 | * * 24N * * | 0 2 0 1 0 | 1 0 2 s4o 2 x . | 4 | 0 2 2 | * * * 48N * | 0 0 0 1 2 | 0 1 2 sefa( s4o3x . . ) | 6 | 3 0 3 | * * * * 32N | 0 0 1 0 2 | 0 2 1 ------------------+-----+-------------+---------------------+-------------------+------- demi( . o3x3x . ) ♦ 12 | 12 6 0 | 4 4 0 0 0 | 16N * * * * | 1 1 0 demi( . . x3x4o ) ♦ 24 | 12 24 0 | 0 8 6 0 0 | * 8N * * * | 1 0 1 s4o3x . . ♦ 12 | 12 0 6 | 4 0 0 0 4 | * * 8N * * | 0 2 0 s4o 2 x4o ♦ 8 | 0 8 4 | 0 0 2 4 0 | * * * 12N * | 0 0 2 sefa( s4o3x3x . ) ♦ 24 | 12 12 12 | 0 4 0 6 4 | * * * * 16N | 0 1 1 ------------------+-----+-------------+---------------------+-------------------+------- demi( . o3x3x4o ) ♦ 96 | 96 96 0 | 32 64 24 0 0 | 16 8 0 0 0 | N * * s4o3x3x . ♦ 96 | 96 48 48 | 32 32 0 24 32 | 8 0 8 0 8 | * 2N * sefa( s4o3x3x4o ) ♦ 192 | 96 192 96 | 0 64 48 96 32 | 0 8 0 24 16 | * * N starting figure: x4o3x3x4o
x3x3o *b3x4o (N → ∞) . . . . . | 96N | 1 2 2 | 2 2 1 4 1 | 1 4 1 2 2 | 2 2 1 -------------+-----+-------------+---------------------+-------------------+------- x . . . . | 2 | 48N * * | 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0 . x . . . | 2 | * 96N * | 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1 . . . x . | 2 | * * 96N | 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1 -------------+-----+-------------+---------------------+-------------------+------- x3x . . . | 6 | 3 3 0 | 32N * * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 0 2 | * 48N * * * | 0 2 1 0 0 | 1 2 0 . x3o . . | 3 | 0 3 0 | * * 32N * * | 1 0 0 2 0 | 2 0 1 . x . *b3x . | 6 | 0 3 3 | * * * 64N * | 0 1 0 1 1 | 1 1 1 . . . x4o | 4 | 0 0 4 | * * * * 24N | 0 0 1 0 2 | 0 2 1 -------------+-----+-------------+---------------------+-------------------+------- x3x3o . . ♦ 12 | 6 12 0 | 4 0 4 0 0 | 8N * * * * | 2 0 0 x3x . *b3x . ♦ 24 | 12 12 12 | 4 6 0 4 0 | * 16N * * * | 1 1 0 x . . x4o ♦ 8 | 4 0 8 | 0 4 0 0 2 | * * 12N * * | 0 2 0 . x3o *b3x . ♦ 12 | 0 12 6 | 0 0 4 4 0 | * * * 16N * | 1 0 1 . x . *b3x4o ♦ 24 | 0 12 24 | 0 0 0 8 6 | * * * * 8N | 0 1 1 -------------+-----+-------------+---------------------+-------------------+------- x3x3o *b3x . ♦ 96 | 48 96 48 | 32 24 32 32 0 | 8 8 0 8 0 | 2N * * x3x . *b3x4o ♦ 192 | 96 96 192 | 32 96 0 64 48 | 0 16 24 0 8 | * N * . x3o *b3x4o ♦ 96 | 0 96 96 | 0 0 32 64 24 | 0 0 0 16 8 | * * N
x3x3x *b3x *b3o (N → ∞) . . . . . | 96N | 1 2 1 1 | 2 1 1 2 2 1 1 | 2 2 1 1 2 1 1 | 2 1 1 1 ----------------+-----+-----------------+-----------------------------+-----------------------+-------- x . . . . | 2 | 48N * * * | 2 1 1 0 0 0 0 | 2 2 1 1 0 0 0 | 2 1 1 0 . x . . . | 2 | * 96N * * | 1 0 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1 . . x . . | 2 | * * 48N * | 0 1 0 2 0 0 1 | 2 0 0 1 2 1 0 | 2 1 0 1 . . . x . | 2 | * * * 48N | 0 0 1 0 2 0 1 | 0 2 0 1 2 0 1 | 2 0 1 1 ----------------+-----+-----------------+-----------------------------+-----------------------+-------- x3x . . . | 6 | 3 3 0 0 | 32N * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . x . . | 4 | 2 0 2 0 | * 24N * * * * * | 2 0 0 1 0 0 0 | 2 1 0 0 x . . x . | 4 | 2 0 0 2 | * * 24N * * * * | 0 2 0 1 0 0 0 | 2 0 1 0 . x3x . . | 6 | 0 3 3 0 | * * * 32N * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . *b3x . | 6 | 0 3 0 3 | * * * * 32N * * | 0 1 0 0 1 0 1 | 1 0 1 1 . x . . *b3o | 3 | 0 3 0 0 | * * * * * 32N * | 0 0 1 0 0 1 1 | 0 1 1 1 . . x x . | 4 | 0 0 2 2 | * * * * * * 24N | 0 0 0 1 2 0 0 | 2 0 0 1 ----------------+-----+-----------------+-----------------------------+-----------------------+-------- x3x3x . . ♦ 24 | 12 12 12 0 | 4 6 0 4 0 0 0 | 8N * * * * * * | 1 1 0 0 x3x . *b3x . ♦ 24 | 12 12 0 12 | 4 0 6 0 4 0 0 | * 8N * * * * * | 1 0 1 0 x3x . . *b3o ♦ 12 | 6 12 0 0 | 4 0 0 0 0 4 0 | * * 8N * * * * | 0 1 1 0 x . x x . ♦ 8 | 4 0 4 4 | 0 2 2 0 0 0 2 | * * * 12N * * * | 2 0 0 0 . x3x *b3x . ♦ 24 | 0 12 12 12 | 0 0 0 4 4 0 6 | * * * * 8N * * | 1 0 0 1 . x3x . *b3o ♦ 12 | 0 12 6 0 | 0 0 0 4 0 4 0 | * * * * * 8N * | 0 1 0 1 . x . *b3x *b3o ♦ 12 | 0 12 0 6 | 0 0 0 0 4 4 0 | * * * * * * 8N | 0 0 1 1 ----------------+-----+-----------------+-----------------------------+-----------------------+-------- x3x3x *b3x . ♦ 192 | 96 96 96 96 | 32 48 48 32 32 0 48 | 8 8 0 24 8 0 0 | N * * * x3x3x . *b3o ♦ 96 | 48 96 48 0 | 32 24 0 32 0 32 0 | 8 0 8 0 0 8 0 | * N * * x3x . *b3x *b3o ♦ 96 | 48 96 0 48 | 32 0 24 0 32 32 0 | 0 8 8 0 0 0 8 | * * N * . x3x *b3x *b3o ♦ 96 | 0 96 48 48 | 0 0 0 32 32 32 24 | 0 0 0 0 8 8 8 | * * * N
© 2004-2025 | top of page |