Acronym | n{4}2{3}2{3}2 |
Name | complex n-edged tesseract |
The incidence matrix of the real encasing polytope (n,n,n,n-quip) is
xno xno xno xno (n>2) . . . . . . . . | nnnn | 8 | 4 24 | 24 32 | 6 48 16 | 24 32 | 4 24 | 8 -------------------+------+-------+------------+-------------+----------------+-----------+--------+--- x . . . . . . . & | 2 | 4nnnn | 1 6 | 9 12 | 3 24 8 | 15 20 | 3 18 | 7 -------------------+------+-------+------------+-------------+----------------+-----------+--------+--- xno . . . . . . & | n | n | 4nnn * | 6 0 | 3 12 0 | 12 8 | 3 12 | 6 x . x . . . . . & | 4 | 4 | * 6nnnn | 2 4 | 1 10 4 | 8 12 | 2 13 | 6 -------------------+------+-------+------------+-------------+----------------+-----------+--------+--- xno x . . . . . & ♦ 2n | 3n | 2 n | 12nnn * | 1 4 0 | 6 4 | 2 8 | 5 x . x . x . . . & ♦ 8 | 12 | 0 6 | * 4nnnn | 0 3 2 | 3 7 | 1 9 | 5 -------------------+------+-------+------------+-------------+----------------+-----------+--------+--- xno xno . . . . & ♦ nn | 2nn | 2n nn | 2n 0 | 6nn * * | 4 0 | 2 4 | 4 xno x . x . . . & ♦ 4n | 8n | 4 5n | 4 n | * 12nnn * | 2 2 | 1 5 | 4 x . x . x . x . ♦ 16 | 32 | 0 24 | 0 8 | * * nnnn | 0 4 | 0 6 | 4 -------------------+------+-------+------------+-------------+----------------+-----------+--------+--- xno xno x . . . & ♦ 2nn | 5nn | 4n 4nn | 6n nn | 2 2n 0 | 12nn * | 1 2 | 3 xno x . x . x . & ♦ 8n | 20n | 8 18n | 12 7n | 0 6 n | * 4nnn | 0 3 | 3 -------------------+------+-------+------------+-------------+----------------+-----------+--------+--- xno xno xno . . & ♦ nnn | 3nnn | 3nn 3nnn | 6nn nnn | 3n 3nn 0 | 3n 0 | 4n * | 2 xno xno x . x . & ♦ 4nn | 12nn | 8n 13nn | 16n 6nn | 4 10n nn | 4 2n | * 6nn | 2 -------------------+------+-------+------------+-------------+----------------+-----------+--------+--- xno xno xno x . & ♦ 2nnn | 7nnn | 6nn 9nnn | 15nn 5nnn | 6n 12nn nnn | 9n 3nn | 2 3n | 4n
The incidence matrix of the complex polytope thus is
nnnn ♦ 4 | 6 | 4 ------+------+-----+--- n | 4nnn | 3 | 3 ------+------+-----+--- ♦ nn | 2n | 6nn | 2 ------+------+-----+--- ♦ nnn | 3nn | 3n | 4n
Generators
with e = exp(2πi/n), E = exp(2πi k/n), where 1 < k < n and k not divisor of n / e 0 0 0 \ / 0 1 0 0 \ / 1 0 0 0 \ / 1 0 0 0 \ R0 = | 0 E 0 0 | , R1 = | 1 0 0 0 | , R2 = | 0 0 1 0 | , R3 = | 0 1 0 0 | | 0 0 E 0 | | 0 0 1 0 | | 0 1 0 0 | | 0 0 0 1 | \ 0 0 0 E / \ 0 0 0 1 / \ 0 0 0 1 / \ 0 0 1 0 / R0n = 1 (rotation-rotation*-rotation*-rotation*) R12 = 1 (exchange 1 & 2) R22 = 1 (exchange 2 & 3) R22 = 1 (exchange 3 & 4) R0 * R1 * R0 * R1 = R1 * R0 * R1 * R0 (rot. → up → rot.* → down = up → rot.* → down → rot.) R0 * R2 = R2 * R0 R0 * R3 = R3 * R0 R1 * R2 * R1 = R2 * R1 * R2 (exchange 1 & 3) R1 * R3 = R3 * R1 R2 * R3 * R2 = R3 * R2 * R3 (exchange 2 & 4)
© 2004-2024 | top of page |