| Acronym | ... |
| Name |
Waterman polychoron number 4 wrt. primitive tesseractic lattice C4 centered at a hole, vertex figure of hyperbolic "NMK ico + 24N lt-o3x3x4o4*a3*c + NMK tico + 3NMK tes" tetracomb |
| Circumradius | sqrt(7) = 2.645751 |
| Face vector | 128, 416, 400, 112 |
By the very definition of Waterman polytopes, not necessarily all vertices are on the same sphere. However in here both the 64 (Q,x)-sidpith vertices and the 64 (q,x)-tat vertices belong to the same radius.
Incidence matrix according to Dynkin symbol
((Qo3oo3oq4xx))&#zh → height = 0
where Q = sqrt(8) = 2.828427 (pseudo)
(tegum sum of (Q,x)-sidpith with (q,x)-tat)
o.3o.3o.4o. | 64 * | 3 3 0 0 | 3 3 3 0 | 1 3 1 0
.o3.o3.o4.o | * 64 | 0 3 3 1 | 0 6 3 3 | 0 3 3 1
--------------------+-------+--------------+--------------+-----------
.. .. .. x. | 2 0 | 96 * * * | 2 0 1 0 | 1 2 0 0 x
oo3oo3oo4oo &#h | 1 1 | * 192 * * | 0 2 1 0 | 0 2 1 0 h
.. .. .q .. | 0 2 | * * 96 * | 0 2 0 2 | 0 1 2 1 q
.. .. .. .x | 0 2 | * * * 32 | 0 0 3 0 | 0 3 0 0 x
--------------------+-------+--------------+--------------+-----------
.. .. o.4x. | 4 0 | 4 0 0 0 | 48 * * * | 1 1 0 0
.. .. oq .. &#h | 1 2 | 0 2 1 0 | * 192 * * | 0 1 1 0
.. .. .. xx &#h | 2 2 | 1 2 0 1 | * * 96 * | 0 2 0 0
.. .o3.q .. | 0 3 | 0 0 3 0 | * * * 64 | 0 0 1 1
--------------------+-------+--------------+--------------+-----------
.. o.3o.4x. | 8 0 | 12 0 0 0 | 6 0 0 0 | 8 * * * x-cube
((Qo .. oq4xx))&#zh | 8 8 | 8 16 4 4 | 2 8 8 0 | * 24 * * Qo oq4xx&#zh (squobcu variant)
.. oo3oq .. &#h | 1 3 | 0 3 3 0 | 0 3 0 1 | * * 64 * oo3oq&#h (tall tet variant)
.o3.o3.q .. | 0 4 | 0 0 6 0 | 0 0 0 4 | * * * 16 q-tet
© 2004-2026 | top of page |