Acronym gyerich
Name parallelly that elongated gyrich
Confer
related CRF honeycombs:
erich   gyrich   6Q3-2S3-ortho   3Q3-S3-2P6-2P3-ortho  

This CRF honeycomb is the elongated form of gyrich or likewise the gyrated form of erich.

Each etobcu could be dissected into pairs of tricu and an equatorial hip. Then this honeycomb would become 3Q3-S3-2P6-2P3-ortho.


Incidence matrix

(N → ∞)

6N |  2  2  1  2 |  1  1  2  2  3  2 | 3 1 1 1
---+-------------+-------------------+--------
 2 | 6N  *  *  * |  1  0  1  0  0  1 | 2 0 1 0  plane, etobcu-inc.*)
 2 |  * 6N  *  * |  0  1  0  1  1  0 | 1 1 0 1  plane, oct-inc.
 2 |  *  * 3N  * |  0  0  2  2  0  0 | 2 0 1 1  parallels
 2 |  *  *  * 6N |  0  0  0  0  2  1 | 2 1 0 0  obliques
---+-------------+-------------------+--------
 3 |  3  0  0  0 | 2N  *  *  *  *  * | 1 0 1 0  plane, etobcu-trip
 3 |  0  3  0  0 |  * 2N  *  *  *  * | 0 1 0 1  plane, oct-trip
 4 |  2  0  2  0 |  *  * 3N  *  *  * | 1 0 1 0  para. sq., etobcu-inc.*)
 4 |  0  2  2  0 |  *  *  * 3N  *  * | 1 0 0 1  para. sq., oct-inc.
 3 |  0  1  0  2 |  *  *  *  * 6N  * | 1 1 0 0  obl. triangles
 4 |  2  0  0  2 |  *  *  *  *  * 3N | 2 0 0 0  obl. squares
---+-------------+-------------------+--------
18 | 12  6  6 12 |  2  0  3  3  6  6 | N * * *  etobcu
 6 |  0  6  0  6 |  0  2  0  0  6  0 | * N * *  oct
 6 |  6  0  3  0 |  2  0  3  0  0  0 | * * N *  trip, etobcu-inc.*)
 6 |  0  6  3  0 |  0  2  0  3  0  0 | * * * N  trip, oct-inc.

*) polar bases are referred to only

© 2004-2018
top of page