Acronym | ... |
Name | xfoE3fooo5xuFx&#zxt |
© | |
Vertex figure | [4,5a,6], [5a2,62], [5a3], [5b,62] |
Face vector | 260, 420, 162 |
Excavating a dodecahedron by 12 peppies and then Stott expanding that outcome, thereby blowing up every vertex into pentagons, the outer (original) edges into squares, and the triangles into hexagons: this is how this very pleasing tetraform acoptic polyhedron, mentioned in 2022 by T. Dorozinski, could be derived.
This tetraform acoptic polyhedron has the following vertex radii:
R( x3f5x ) = sqrt[47+20 sqrt(5)]/2 = 4.788563 R( f3o5u ) = sqrt[37+14 sqrt(5)]/2 = 4.132340 R( o3o5F ) = sqrt[27+12 sqrt(5)]/2 = 3.668542 R( E3o5x ) = sqrt[27+ 8 sqrt(5)]/2 = 3.349946 where: E = 2f-x = f+v = sqrt(5), F = x+f = ff
Incidence matrix according to Dynkin symbol
xfoE3fooo5xuFx&#zxt → all existing heights = 0 o...3o...5o... | 120 * * * | 1 1 1 0 0 0 | 1 1 1 0 [4,5a,6] .o..3.o..5.o.. | * 60 * * | 0 0 2 1 1 0 | 0 2 2 0 [5a2,62] ..o.3..o.5..o. | * * 20 * | 0 0 0 3 0 0 | 0 3 0 0 [5a3] ...o3...o5...o | * * * 60 | 0 0 0 0 1 2 | 0 0 2 1 [5b,62] -------------------+--------------+--------------------+------------ x... .... .... | 2 0 0 0 | 60 * * * * * | 1 1 0 0 .... .... x... | 2 0 0 0 | * 60 * * * * | 1 0 1 0 oo..3oo..5oo..&#x | 1 1 0 0 | * * 120 * * * | 0 1 1 0 .oo.3.oo.5.oo.&#x | 0 1 1 0 | * * * 60 * * | 0 2 0 0 .o.o3.o.o5.o.o&#x | 0 1 0 1 | * * * * 60 * | 0 0 2 0 .... .... ...x | 0 0 0 2 | * * * * * 60 | 0 0 1 1 -------------------+--------------+--------------------+------------ x... .... x... | 4 0 0 0 | 2 2 0 0 0 0 | 30 * * * {4} xfo. .... ....&#xt | 2 2 1 0 | 1 0 2 2 0 0 | * 60 * * {5a} (light blue) .... .... xu.x&#xt | 2 2 0 2 | 0 1 2 0 2 1 | * * 60 * {6} .... ...o5...x | 0 0 0 5 | 0 0 0 0 0 5 | * * * 12 {5b} (magenta)
© 2004-2025 | top of page |