Acronym ...
Name x3β4o3β (?)
Circumradius ...

No uniform realisation is possible.


Incidence matrix according to Dynkin symbol

x3β4o3β

both( . . . . ) | 576 |   1   1   2   2   2 |   2   1   2   4   2   4 |  1  2  1  1   4
----------------+-----+---------------------+-------------------------+----------------
both( x . . . ) |   2 | 288   *   *   *   * |   2   0   0   2   2   0 |  1  2  1  0   2
both( . s4o . ) |   2 |   * 288   *   *   * |   0   0   2   0   0   2 |  1  0  0  1   2
both( . s 2 s ) |   2 |   *   * 576   *   * |   0   0   0   2   0   2 |  0  1  0  1   2
sefa( x3β . . ) |   2 |   *   *   * 576   * |   1   0   1   1   0   0 |  1  1  0  0   1
sefa( . . o3β ) |   2 |   *   *   *   * 576 |   0   1   0   0   1   1 |  0  0  1  1   1
----------------+-----+---------------------+-------------------------+----------------
      x3β . .      6 |   3   0   0   3   0 | 192   *   *   *   *   * |  1  1  0  0   0
      . . o3β      3 |   0   0   0   0   3 |   * 192   *   *   *   * |  0  0  1  1   0
sefa( x3β4o . ) |   4 |   0   2   0   2   0 |   *   * 288   *   *   * |  1  0  0  0   1
sefa( x3β 2 β ) |   4 |   1   0   2   1   0 |   *   *   * 576   *   * |  0  1  0  0   1
sefa( x 2 o3β ) |   4 |   2   0   0   0   2 |   *   *   *   * 288   * |  0  0  1  0   1
sefa( . β4o3β ) |   4 |   0   1   2   0   1 |   *   *   *   *   * 576 |  0  0  0  1   1
----------------+-----+---------------------+-------------------------+----------------
      x3β4o .     24 |  12  12   0  24   0 |   6   0  12   0   0   0 | 24  *  *  *   *
      x3β 2 β     12 |   6   0   6   6   0 |   2   0   0   6   0   0 |  * 96  *  *   *
      x 2 o3β      6 |   3   0   0   0   6 |   0   2   0   0   3   0 |  *  * 96  *   *
      . β4o3β     24 |   0  12  24   0  24 |   0   8   0   0   0  24 |  *  *  * 24   *
sefa( x3β4o3β )    8 |   2   2   4   2   2 |   0   0   1   2   1   2 |  *  *  *  * 288

starting figure: x3x4o3x

© 2004-2019
top of page