Acronym | tatriddip |
Name | truncated triangular duoprism |
Circumradius | sqrt[(2y2+5y+5)/3] |
Face vector | 36, 72, 51, 15 |
Confer | |
External links |
Truncation would result in 3 different edge sizes in the outcome polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size q=sqrt(2). The third one would be the arbitrary expansion size y (corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in the retdip, while y → ∞ results again in the pre-image triddip (rescaled back down accordingly).
Incidence matrix according to Dynkin symbol
xo3yb by3ox&#zq → height = 0 y > 0 (arbitrary expansion size) b = y+2 (pseudo) (q-laced tegum sum of 2 alternate (x,y,b)-thiddips) o.3o. o.3o. & | 36 | 1 1 2 | 1 3 2 | 3 1 ------------------+----+----------+--------+---- x. .. .. .. & | 2 | 18 * * | 1 2 0 | 2 1 .. y. .. .. & | 2 | * 18 * | 1 0 2 | 3 0 oo3oo oo3oo&#q | 2 | * * 36 | 0 2 1 | 2 1 ------------------+----+----------+--------+---- x.3y. .. .. & | 6 | 3 3 0 | 6 * * | 2 0 xo .. .. ..&#q & | 3 | 1 0 2 | * 36 * | 1 1 .. yb by ..&#zq | 8 | 0 4 4 | * * 9 | 2 0 ------------------+----+----------+--------+---- xo3yb by ..&#zq & | 18 | 6 9 12 | 2 6 3 | 6 * titrip xo .. .. ox&#q | 4 | 2 0 4 | 0 4 0 | * 9 disphenoid
© 2004-2024 | top of page |