Acronym ticont Name truncated tetracontoctachoron Circumradius sqrt[(6+4 sqrt(2))y2+(23+16 sqrt(2))y+(23+16 sqrt(2))] Confer extremal cases: cont   recont   general polytopal classes: isogonal Externallinks Truncation would result in 3 different edge sizes in the outcome isohedral polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size k=sqrt[2+sqrt(2)]. The third one would be the arbitrary expansion size y (wrt. the rectified extremum, i.e. corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in recont, while y → ∞ results again in the pre-image cont (rescaled back down accordingly).

Incidence matrix according to Dynkin symbol

xo3yb4by3ox&#zk   → height = 0
k = x(8,2) = sqrt[2+sqrt(2)] = 1.847759
y > 0 (depending on truncation depth)
b = y+2+sqrt(2) (pseudo)
(k-laced tegum sum of 2 inverted (x,y,b)-gricoes)

o.3o.4o.3o.     & | 1152 |   1   1    2 |   1    3   2 |  3   1
------------------+------+--------------+--------------+-------
x. .. .. ..     & |    2 | 576   *    * |   1    2   0 |  2   1  x
.. y. .. ..     & |    2 |   * 576    * |   1    0   2 |  3   0  y
oo3oo4oo3oo&#k    |    2 |   *   * 1152 |   0    2   1 |  2   1  k
------------------+------+--------------+--------------+-------
x.3y. .. ..     & |    6 |   3   3    0 | 192    *   * |  2   0  (x,y)-{6}
xo .. .. ..&#k  & |    3 |   1   0    2 |   * 1152   * |  1   1  xkk
.. yb4by ..&#zk   |   16 |   0   8    8 |   *    * 144 |  2   0  (y,k)-{16}
------------------+------+--------------+--------------+-------
xo3yb4by ..&#zk &    72 |  24  36   48 |   8   24   6 | 48   *  dittec
xo .. .. ox&#k        4 |   2   0    4 |   0    4   0 |  * 288  disphenoid