| Acronym | ticont |
| Name | truncated tetracontoctachoron |
| Circumradius | sqrt[(6+4 sqrt(2))y2+(23+16 sqrt(2))y+(23+16 sqrt(2))] |
| Face vector | 1152, 2304, 1488, 336 |
| Confer | |
|
External links |
|
Truncation would result in 3 different edge sizes in the outcome isohedral polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size k=sqrt[2+sqrt(2)]. The third one would be the arbitrary expansion size y (wrt. the rectified extremum, i.e. corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in recont, while y → ∞ results again in the pre-image cont (rescaled back down accordingly).
Incidence matrix according to Dynkin symbol
xo3yb4by3ox&#zk → height = 0
k = x(8,2) = sqrt[2+sqrt(2)] = 1.847759
y > 0 (depending on truncation depth)
b = y+2+sqrt(2) (pseudo)
(k-laced tegum sum of 2 inverted (x,y,b)-gricoes)
o.3o.4o.3o. & | 1152 | 1 1 2 | 1 3 2 | 3 1
------------------+------+--------------+--------------+-------
x. .. .. .. & | 2 | 576 * * | 1 2 0 | 2 1 x
.. y. .. .. & | 2 | * 576 * | 1 0 2 | 3 0 y
oo3oo4oo3oo&#k | 2 | * * 1152 | 0 2 1 | 2 1 k
------------------+------+--------------+--------------+-------
x.3y. .. .. & | 6 | 3 3 0 | 192 * * | 2 0 (x,y)-{6}
xo .. .. ..&#k & | 3 | 1 0 2 | * 1152 * | 1 1 xkk
.. yb4by ..&#zk | 16 | 0 8 8 | * * 144 | 2 0 (y,k)-{16}
------------------+------+--------------+--------------+-------
xo3yb4by ..&#zk & ♦ 72 | 24 36 48 | 8 24 6 | 48 * dittec
xo .. .. ox&#k ♦ 4 | 2 0 4 | 0 4 0 | * 288 disphenoid
© 2004-2025 | top of page |