Acronym | triddap |
Name |
triangle duoantiprism, hemiated hiddip |
Circumradius | sqrt(2) = 1.414214 |
Face vector | 18, 72, 84, 30 |
Confer | |
External links |
No uniform realisation is possible for any of those ao3ob bo3oa&#zc. Even so all are isogonal.
Incidence matrix according to Dynkin symbol
s6o2s6o demi( . . . . ) | 18 | 2 4 2 | 1 6 6 1 | 2 4 2 ----------------+----+----------+-----------+------- sefa( s6o . . ) | 2 | 18 * * | 1 2 0 0 | 2 1 0 h s . s . | 2 | * 36 * | 0 2 2 0 | 1 2 1 q sefa( . . s6o ) | 2 | * * 18 | 0 0 2 1 | 0 1 2 h ----------------+----+----------+-----------+------- s6o . . | 3 | 3 0 0 | 6 * * * | 2 0 0 sefa( s6o2s . ) | 3 | 1 2 0 | * 36 * * | 1 1 0 sefa( s-2-s6o ) | 3 | 0 2 1 | * * 36 * | 0 1 1 . . s6o | 3 | 0 0 3 | * * * 6 | 0 0 2 ----------------+----+----------+-----------+------- s6o2s . ♦ 6 | 6 6 0 | 2 6 0 0 | 6 * * 3-ap sefa( s6o2s6o ) ♦ 4 | 1 4 1 | 0 2 2 0 | * 18 * 2-ap s-2-s6o ♦ 6 | 0 6 6 | 0 0 6 2 | * * 6 3-ap starting figure: x6o x6o
s3s2s3s demi( . . . . ) | 18 | 4 4 | 2 12 | 4 4 ------------------+----+-------+-------+------ sefa( s3s . . ) & | 2 | 36 * | 1 2 | 2 1 h s-2-s . & | 2 | * 36 | 0 4 | 2 2 q ------------------+----+-------+-------+------ s3s . . & | 3 | 3 0 | 12 * | 2 0 sefa( s3s2s . ) & | 3 | 1 2 | * 72 | 1 1 ------------------+----+-------+-------+------ s3s2s . & ♦ 6 | 6 6 | 2 6 | 12 * 3-ap sefa( s3s2s3s ) ♦ 4 | 2 4 | 0 4 | * 18 2-ap starting figure: x3x2x3x
ho3oh ho3oh&#zq → height = 0 (q-laced tegum sum of 2 bidual h-sized triddips) o.3o. .. .. & | 18 | 4 4 | 2 12 | 4 4 -----------------+----+-------+-------+------ h. .. .. .. & | 2 | 36 * | 1 2 | 2 1 h oo3oo oo3oo&#q | 2 | * 36 | 0 4 | 2 2 q -----------------+----+-------+-------+------ h.3o. .. .. & | 3 | 3 0 | 12 * | 2 0 ho .. .. ..&#q & | 3 | 1 2 | * 72 | 1 1 -----------------+----+-------+-------+------ ho3ox .. ..&#q & ♦ 6 | 6 6 | 2 6 | 12 * 3-ap ho .. oh ..&#q & ♦ 4 | 2 4 | 0 4 | * 18 2-ap
© 2004-2024 | top of page |