Acronym triddap Name triangle duoantiprism,hemiated hiddip Circumradius sqrt(2) = 1.414214 Confer more general variants: sns2sms     case 0 < b:a < 1/2 or 2 < b:a < ∞  /  case b:a = 1/2 or b:a = 2  /  case 1/2 < b:a < 2   with esp. this case b:a = 1 general polytopal classes: isogonal Externallinks

No uniform realisation is possible for any of those ao3ob bo3oa&#zc. Even so all are isogonal.

Incidence matrix according to Dynkin symbol

```s6o2s6o

demi( . . . . ) | 18 |  2  4  2 | 1  6  6 1 | 2  4 2
----------------+----+----------+-----------+-------
sefa( s6o . . ) |  2 | 18  *  * | 1  2  0 0 | 2  1 0  h
s . s .   |  2 |  * 36  * | 0  2  2 0 | 1  2 1  q
sefa( . . s6o ) |  2 |  *  * 18 | 0  0  2 1 | 0  1 2  h
----------------+----+----------+-----------+-------
s6o . .   |  3 |  3  0  0 | 6  *  * * | 2  0 0
sefa( s6o2s . ) |  3 |  1  2  0 | * 36  * * | 1  1 0
sefa( s-2-s6o ) |  3 |  0  2  1 | *  * 36 * | 0  1 1
. . s6o   |  3 |  0  0  3 | *  *  * 6 | 0  0 2
----------------+----+----------+-----------+-------
s6o2s .   ♦  6 |  6  6  0 | 2  6  0 0 | 6  * *  3-ap
sefa( s6o2s6o ) ♦  4 |  1  4  1 | 0  2  2 0 | * 18 *  2-ap
s-2-s6o   ♦  6 |  0  6  6 | 0  0  6 2 | *  * 6  3-ap

starting figure: x6o x6o
```

```s3s2s3s

demi( . . . . )   | 18 |  4  4 |  2 12 |  4  4
------------------+----+-------+-------+------
sefa( s3s . . ) & |  2 | 36  * |  1  2 |  2  1  h
s-2-s .   & |  2 |  * 36 |  0  4 |  2  2  q
------------------+----+-------+-------+------
s3s . .   & |  3 |  3  0 | 12  * |  2  0
sefa( s3s2s . ) & |  3 |  1  2 |  * 72 |  1  1
------------------+----+-------+-------+------
s3s2s .   & ♦  6 |  6  6 |  2  6 | 12  *  3-ap
sefa( s3s2s3s )   ♦  4 |  2  4 |  0  4 |  * 18  2-ap

starting figure: x3x2x3x
```

```ho3oh ho3oh&#zq   → height = 0
(q-laced tegum sum of 2 bidual h-sized triddips)

o.3o. .. ..    & | 18 |  4  4 |  2 12 |  4  4
-----------------+----+-------+-------+------
h. .. .. ..    & |  2 | 36  * |  1  2 |  2  1  h
oo3oo oo3oo&#q   |  2 |  * 36 |  0  4 |  2  2  q
-----------------+----+-------+-------+------
h.3o. .. ..    & |  3 |  3  0 | 12  * |  2  0
ho .. .. ..&#q & |  3 |  1  2 |  * 72 |  1  1
-----------------+----+-------+-------+------
ho3ox .. ..&#q & ♦  6 |  6  6 |  2  6 | 12  *  3-ap
ho .. oh ..&#q & ♦  4 |  2  4 |  0  4 |  * 18  2-ap
```

 © 2004-2021 top of page