Acronym tocal
Name teracellated heptapeton,
pentitruncated heptapeton
Circumradius sqrt(19/7) = 1.647509
Face vector 210, 945, 1820, 1785, 826, 126
Confer
general polytopal classes:
Wythoffian polypeta  
External
links
wikipedia   polytopewiki  

Incidence matrix according to Dynkin symbol

x3x3o3o3o3x

. . . . . . | 210 |   1   4   4 |   4   4   6  12   6 |   6  12   6   4  12  12   4 |  4  12  12   4  1   4   6   4  1 | 1  4  6  4  1 1
------------+-----+-------------+---------------------+-----------------------------+----------------------------------+----------------
x . . . . . |   2 | 105   *   * |   4   4   0   0   0 |   6  12   6   0   0   0   0 |  4  12  12   4  0   0   0   0  0 | 1  4  6  4  1 0
. x . . . . |   2 |   * 420   * |   1   0   3   3   0 |   3   3   0   3   6   3   0 |  3   6   3   0  1   3   3   1  0 | 1  3  3  1  0 1
. . . . . x |   2 |   *   * 420 |   0   1   0   3   3 |   0   3   3   0   3   6   3 |  0   3   6   3  0   1   3   3  1 | 0  1  3  3  1 1
------------+-----+-------------+---------------------+-----------------------------+----------------------------------+----------------
x3x . . . . |   6 |   3   3   0 | 140   *   *   *   * |   3   3   0   0   0   0   0 |  3   6   3   0  0   0   0   0  0 | 1  3  3  1  0 0
x . . . . x |   4 |   2   0   2 |   * 210   *   *   * |   0   3   3   0   0   0   0 |  0   3   6   3  0   0   0   0  0 | 0  1  3  3  1 0
. x3o . . . |   3 |   0   3   0 |   *   * 420   *   * |   1   0   0   2   2   0   0 |  2   2   0   0  1   2   1   0  0 | 1  2  1  0  0 1
. x . . . x |   4 |   0   2   2 |   *   *   * 630   * |   0   1   0   0   2   2   0 |  0   2   2   0  0   1   2   1  0 | 0  1  2  1  0 1
. . . . o3x |   3 |   0   0   3 |   *   *   *   * 420 |   0   0   1   0   0   2   2 |  0   0   2   2  0   0   1   2  1 | 0  0  1  2  1 1
------------+-----+-------------+---------------------+-----------------------------+----------------------------------+----------------
x3x3o . . .   12 |   6  12   0 |   4   0   4   0   0 | 105   *   *   *   *   *   * |  2   2   0   0  0   0   0   0  0 | 1  2  1  0  0 0
x3x . . . x   12 |   6   6   6 |   2   3   0   3   0 |   * 210   *   *   *   *   * |  0   2   2   0  0   0   0   0  0 | 0  1  2  1  0 0
x . . . o3x    6 |   3   0   6 |   0   3   0   0   2 |   *   * 210   *   *   *   * |  0   0   2   2  0   0   0   0  0 | 0  0  1  2  1 0
. x3o3o . .    4 |   0   6   0 |   0   0   4   0   0 |   *   *   * 210   *   *   * |  1   0   0   0  1   1   0   0  0 | 1  1  0  0  0 1
. x3o . . x    6 |   0   6   3 |   0   0   2   3   0 |   *   *   *   * 420   *   * |  0   1   0   0  0   1   1   0  0 | 0  1  1  0  0 1
. x . . o3x    6 |   0   3   6 |   0   0   0   3   2 |   *   *   *   *   * 420   * |  0   0   1   0  0   0   1   1  0 | 0  0  1  1  0 1
. . . o3o3x    4 |   0   0   6 |   0   0   0   0   4 |   *   *   *   *   *   * 210 |  0   0   0   1  0   0   0   1  1 | 0  0  0  1  1 1
------------+-----+-------------+---------------------+-----------------------------+----------------------------------+----------------
x3x3o3o . .   20 |  10  30   0 |  10   0  20   0   0 |   5   0   0   5   0   0   0 | 42   *   *   *  *   *   *   *  * | 1  1  0  0  0 0
x3x3o . . x   24 |  12  24  12 |   8   6   8  12   0 |   2   4   0   0   4   0   0 |  * 105   *   *  *   *   *   *  * | 0  1  1  0  0 0
x3x . . o3x   18 |   9   9  18 |   3   9   0   9   6 |   0   3   3   0   0   3   0 |  *   * 140   *  *   *   *   *  * | 0  0  1  1  0 0
x . . o3o3x    8 |   4   0  12 |   0   6   0   0   8 |   0   0   4   0   0   0   2 |  *   *   * 105  *   *   *   *  * | 0  0  0  1  1 0
. x3o3o3o .    5 |   0  10   0 |   0   0  10   0   0 |   0   0   0   5   0   0   0 |  *   *   *   * 42   *   *   *  * | 1  0  0  0  0 1
. x3o3o . x    8 |   0  12   4 |   0   0   8   6   0 |   0   0   0   2   4   0   0 |  *   *   *   *  * 105   *   *  * | 0  1  0  0  0 1
. x3o . o3x    9 |   0   9   9 |   0   0   3   9   3 |   0   0   0   0   3   3   0 |  *   *   *   *  *   * 140   *  * | 0  0  1  0  0 1
. x . o3o3x    8 |   0   4  12 |   0   0   0   6   8 |   0   0   0   0   0   4   2 |  *   *   *   *  *   *   * 105  * | 0  0  0  1  0 1
. . o3o3o3x    5 |   0   0  10 |   0   0   0   0  10 |   0   0   0   0   0   0   5 |  *   *   *   *  *   *   *   * 42 | 0  0  0  0  1 1
------------+-----+-------------+---------------------+-----------------------------+----------------------------------+----------------
x3x3o3o3o .   30 |  15  60   0 |  20   0  60   0   0 |  15   0   0  30   0   0   0 |  6   0   0   0  6   0   0   0  0 | 7  *  *  *  * *
x3x3o3o . x   40 |  20  60  20 |  20  10  40  30   0 |  10  10   0  10  20   0   0 |  2   5   0   0  0   5   0   0  0 | * 21  *  *  * *
x3x3o . o3x   36 |  18  36  36 |  12  18  12  36  12 |   3  12   6   0  12  12   0 |  0   3   4   0  0   0   4   0  0 | *  * 35  *  * *
x3x . o3o3x   24 |  12  12  36 |   4  18   0  18  24 |   0   6  12   0   0  12   6 |  0   0   4   3  0   0   0   3  0 | *  *  * 35  * *
x . o3o3o3x   10 |   5   0  20 |   0  10   0   0  20 |   0   0  10   0   0   0  10 |  0   0   0   5  0   0   0   0  2 | *  *  *  * 21 *
. x3o3o3o3x   30 |   0  60  60 |   0   0  60  90  60 |   0   0   0  30  60  60  30 |  0   0   0   0  6  15  20  15  6 | *  *  *  *  * 7

© 2004-2025
top of page