Acronym ... Name 2iddip (?) Circumradius sqrt[7+2 sqrt(5)]/2 = 1.693527 Confer iddip

This holosnub indeed can be resized back to all unit edge lengths, resulting then in a Grünbaumian double-covered iddip. In fact all elements not itself being a Grünbaumian double-cover come in 2 coincident pairs each.

Incidence matrix according to Dynkin symbol

```β2β3x5o

both( . . . . ) | 120 |   2  1   2 |  1  2   4  1 |  2 1  2
----------------+-----+------------+--------------+--------
both( . . x . ) |   2 | 120  *   * |  1  1   1  0 |  1 1  1
β2β . .   |   2 |   * 60   * |  0  0   4  0 |  2 0  2
sefa( . β3x . ) |   2 |   *  * 120 |  0  1   1  1 |  1 1  1
----------------+-----+------------+--------------+--------
both( . . x5o ) |   5 |   5  0   0 | 24  *   *  * |  0 1  1
. β3x .   ♦   6 |   3  0   3 |  * 40   *  * |  1 1  0  {6/2}
sefa( β2β3x . ) |   4 |   1  2   1 |  *  * 120  * |  1 0  1
sefa( . β3x5o ) |   5 |   0  0   5 |  *  *   * 24 |  0 1  1  {5}
----------------+-----+------------+--------------+--------
β2β3x .   ♦  12 |   6  6   6 |  0  2   6  0 | 20 *  *
. β3x5o   ♦  60 |  60  0  60 | 12 20   0 12 |  * 2  *
sefa( β2β3x5o ) ♦  10 |   5  5   5 |  1  0   5  1 |  * * 24

starting figure: x x3x5o
```