Acronym | ... |
Name | 2iddip (?) |
Circumradius | sqrt[7+2 sqrt(5)]/2 = 1.693527 |
Confer | iddip |
This holosnub indeed can be resized back to all unit edge lengths, resulting then in a Grünbaumian double-covered iddip. In fact all elements not itself being a Grünbaumian double-cover come in 2 coincident pairs each.
Incidence matrix according to Dynkin symbol
β2β3x5o both( . . . . ) | 120 | 2 1 2 | 1 2 4 1 | 2 1 2 ----------------+-----+------------+--------------+-------- both( . . x . ) | 2 | 120 * * | 1 1 1 0 | 1 1 1 β2β . . | 2 | * 60 * | 0 0 4 0 | 2 0 2 sefa( . β3x . ) | 2 | * * 120 | 0 1 1 1 | 1 1 1 ----------------+-----+------------+--------------+-------- both( . . x5o ) | 5 | 5 0 0 | 24 * * * | 0 1 1 . β3x . ♦ 6 | 3 0 3 | * 40 * * | 1 1 0 {6/2} sefa( β2β3x . ) | 4 | 1 2 1 | * * 120 * | 1 0 1 sefa( . β3x5o ) | 5 | 0 0 5 | * * * 24 | 0 1 1 {5} ----------------+-----+------------+--------------+-------- β2β3x . ♦ 12 | 6 6 6 | 0 2 6 0 | 20 * * . β3x5o ♦ 60 | 60 0 60 | 12 20 0 12 | * 2 * sefa( β2β3x5o ) ♦ 10 | 5 5 5 | 1 0 5 1 | * * 24 starting figure: x x3x5o
© 2004-2025 | top of page |