Acronym | tiggipe |
Name | truncated-great-icosahedron prism |
Circumradius | sqrt[(31-9 sqrt(5))/8] = 1.165943 |
Dihedral angles | |
Face vector | 120, 240, 154, 34 |
Confer |
|
External links |
As abstract polytope tiggipe is isomorphic to tipe, thereby replacing pentagrams by pentagons resp. replacing tiggy by ti and stip by pip.
Incidence matrix according to Dynkin symbol
x x3x5/2o . . . . | 120 | 1 1 1 | 1 2 2 1 | 2 1 1 ----------+-----+-----------+-------------+-------- x . . . | 2 | 60 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 60 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 120 | 0 1 1 1 | 1 1 1 ----------+-----+-----------+-------------+-------- x x . . | 4 | 2 2 0 | 30 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 60 * * | 1 1 0 . x3x . | 6 | 0 3 3 | * * 40 * | 1 0 1 . . x5/2o | 5 | 0 0 5 | * * * 24 | 0 1 1 ----------+-----+-----------+-------------+-------- x x3x . ♦ 12 | 6 6 6 | 3 3 2 0 | 20 * * x . x5/2o ♦ 10 | 5 0 10 | 0 5 0 2 | * 12 * . x3x5/2o ♦ 60 | 0 30 60 | 0 0 20 12 | * * 2
x x3x5/3o . . . . | 120 | 1 1 1 | 1 2 2 1 | 2 1 1 ----------+-----+-----------+-------------+-------- x . . . | 2 | 60 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 60 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 120 | 0 1 1 1 | 1 1 1 ----------+-----+-----------+-------------+-------- x x . . | 4 | 2 2 0 | 30 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 60 * * | 1 1 0 . x3x . | 6 | 0 3 3 | * * 40 * | 1 0 1 . . x5/3o | 5 | 0 0 5 | * * * 24 | 0 1 1 ----------+-----+-----------+-------------+-------- x x3x . ♦ 12 | 6 6 6 | 3 3 2 0 | 20 * * x . x5/3o ♦ 10 | 5 0 10 | 0 5 0 2 | * 12 * . x3x5/3o ♦ 60 | 0 30 60 | 0 0 20 12 | * * 2
xx3xx5/2oo&#x → height = 1
(tiggy || tiggy)
o.3o.5/2o. | 60 * | 1 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 0
.o3.o5/2.o | * 60 | 0 0 1 1 2 | 0 0 1 2 2 1 | 0 2 1 1
--------------+-------+----------------+-------------------+----------
x. .. .. | 2 0 | 30 * * * * | 2 0 1 0 0 0 | 1 2 0 0
.. x. .. | 2 0 | * 60 * * * | 1 1 0 1 0 0 | 1 1 1 0
oo3oo5/2oo&#x | 1 1 | * * 60 * * | 0 0 1 2 0 0 | 0 2 1 0
.x .. .. | 0 2 | * * * 30 * | 0 0 1 0 2 0 | 0 2 0 1
.. .x .. | 0 2 | * * * * 60 | 0 0 0 1 1 1 | 0 1 1 1
--------------+-------+----------------+-------------------+----------
x.3x. .. | 6 0 | 3 3 0 0 0 | 20 * * * * * | 1 1 0 0
.. x.5/2o. | 5 0 | 0 5 0 0 0 | * 12 * * * * | 1 0 1 0
xx .. ..&#x | 2 2 | 1 0 2 1 0 | * * 30 * * * | 0 2 0 0
.. xx ..&#x | 2 2 | 0 1 2 0 1 | * * * 60 * * | 0 1 1 0
.x3.x .. | 0 6 | 0 0 0 3 3 | * * * * 20 * | 0 1 0 1
.. .x5/2.o | 0 5 | 0 0 0 0 5 | * * * * * 12 | 0 0 1 1
--------------+-------+----------------+-------------------+----------
x.3x.5/2o. ♦ 60 0 | 30 60 0 0 0 | 20 12 0 0 0 0 | 1 * * *
xx3xx ..&#x ♦ 6 6 | 3 3 6 3 3 | 1 0 3 3 1 0 | * 20 * *
.. xx5/2oo&#x ♦ 5 5 | 0 5 5 0 5 | 0 1 0 5 0 1 | * * 12 *
.x3.x5/2.o ♦ 0 60 | 0 0 0 30 60 | 0 0 0 0 20 12 | * * * 1
© 2004-2024 | top of page |