Acronym tiggipe
Name truncated-great-icosahedron prism
Circumradius sqrt[(31-9 sqrt(5))/8] = 1.165943
Dihedral angles
  • at {4} between hip and stip:   arccos(-sqrt[(5-2 sqrt(5))/15]) = 100.812317°
  • at {6} between hip and tiggy:   90°
  • at {5/2} between stip and tiggy:   90°
  • at {4} between hip and hip:   arccos(sqrt(5)/3) = 41.810315°
Face vector 120, 240, 154, 34
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki

As abstract polytope tiggipe is isomorphic to tipe, thereby replacing pentagrams by pentagons resp. replacing tiggy by ti and stip by pip.


Incidence matrix according to Dynkin symbol

x x3x5/2o

. . .   . | 120 |  1  1   1 |  1  2  2  1 |  2  1 1
----------+-----+-----------+-------------+--------
x . .   . |   2 | 60  *   * |  1  2  0  0 |  2  1 0
. x .   . |   2 |  * 60   * |  1  0  2  0 |  2  0 1
. . x   . |   2 |  *  * 120 |  0  1  1  1 |  1  1 1
----------+-----+-----------+-------------+--------
x x .   . |   4 |  2  2   0 | 30  *  *  * |  2  0 0
x . x   . |   4 |  2  0   2 |  * 60  *  * |  1  1 0
. x3x   . |   6 |  0  3   3 |  *  * 40  * |  1  0 1
. . x5/2o |   5 |  0  0   5 |  *  *  * 24 |  0  1 1
----------+-----+-----------+-------------+--------
x x3x   .   12 |  6  6   6 |  3  3  2  0 | 20  * *
x . x5/2o   10 |  5  0  10 |  0  5  0  2 |  * 12 *
. x3x5/2o   60 |  0 30  60 |  0  0 20 12 |  *  * 2

x x3x5/3o

. . .   . | 120 |  1  1   1 |  1  2  2  1 |  2  1 1
----------+-----+-----------+-------------+--------
x . .   . |   2 | 60  *   * |  1  2  0  0 |  2  1 0
. x .   . |   2 |  * 60   * |  1  0  2  0 |  2  0 1
. . x   . |   2 |  *  * 120 |  0  1  1  1 |  1  1 1
----------+-----+-----------+-------------+--------
x x .   . |   4 |  2  2   0 | 30  *  *  * |  2  0 0
x . x   . |   4 |  2  0   2 |  * 60  *  * |  1  1 0
. x3x   . |   6 |  0  3   3 |  *  * 40  * |  1  0 1
. . x5/3o |   5 |  0  0   5 |  *  *  * 24 |  0  1 1
----------+-----+-----------+-------------+--------
x x3x   .   12 |  6  6   6 |  3  3  2  0 | 20  * *
x . x5/3o   10 |  5  0  10 |  0  5  0  2 |  * 12 *
. x3x5/3o   60 |  0 30  60 |  0  0 20 12 |  *  * 2

xx3xx5/2oo&#x   → height = 1
(tiggy || tiggy)

o.3o.5/2o.    | 60  * |  1  2  1  0  0 |  2  1  1  2  0  0 | 1  2  1 0
.o3.o5/2.o    |  * 60 |  0  0  1  1  2 |  0  0  1  2  2  1 | 0  2  1 1
--------------+-------+----------------+-------------------+----------
x. ..   ..    |  2  0 | 30  *  *  *  * |  2  0  1  0  0  0 | 1  2  0 0
.. x.   ..    |  2  0 |  * 60  *  *  * |  1  1  0  1  0  0 | 1  1  1 0
oo3oo5/2oo&#x |  1  1 |  *  * 60  *  * |  0  0  1  2  0  0 | 0  2  1 0
.x ..   ..    |  0  2 |  *  *  * 30  * |  0  0  1  0  2  0 | 0  2  0 1
.. .x   ..    |  0  2 |  *  *  *  * 60 |  0  0  0  1  1  1 | 0  1  1 1
--------------+-------+----------------+-------------------+----------
x.3x.   ..    |  6  0 |  3  3  0  0  0 | 20  *  *  *  *  * | 1  1  0 0
.. x.5/2o.    |  5  0 |  0  5  0  0  0 |  * 12  *  *  *  * | 1  0  1 0
xx ..   ..&#x |  2  2 |  1  0  2  1  0 |  *  * 30  *  *  * | 0  2  0 0
.. xx   ..&#x |  2  2 |  0  1  2  0  1 |  *  *  * 60  *  * | 0  1  1 0
.x3.x   ..    |  0  6 |  0  0  0  3  3 |  *  *  *  * 20  * | 0  1  0 1
.. .x5/2.o    |  0  5 |  0  0  0  0  5 |  *  *  *  *  * 12 | 0  0  1 1
--------------+-------+----------------+-------------------+----------
x.3x.5/2o.     60  0 | 30 60  0  0  0 | 20 12  0  0  0  0 | 1  *  * *
xx3xx   ..&#x   6  6 |  3  3  6  3  3 |  1  0  3  3  1  0 | * 20  * *
.. xx5/2oo&#x   5  5 |  0  5  5  0  5 |  0  1  0  5  0  1 | *  * 12 *
.x3.x5/2.o      0 60 |  0  0  0 30 60 |  0  0  0  0 20 12 | *  *  * 1

© 2004-2024
top of page