Acronym tipaprip, tip || prip Name (degenerate) tip atop prip Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```ox3ox3xo3xx&#x   → height = 0
(tip || prip)

o.3o.3o.3o.    | 20  * |  3  1   6  0  0  0 |  3  3  3  3  6  6  0  0  0  0  0 | 1 3  1  3  3  3  3  6 0  0  0 0 | 1 1  1  3 3 0
.o3.o3.o3.o    |  * 60 |  0  0   2  1  2  2 |  0  0  2  2  1  2  2  2  1  2  1 | 0 0  2  1  2  1  2  1 1  2  1 1 | 0 1  2  1 1 1
---------------+-------+--------------------+----------------------------------+---------------------------------+--------------
.. .. x. ..    |  2  0 | 30  *   *  *  *  * |  2  1  0  0  2  0  0  0  0  0  0 | 1 2  0  1  0  2  0  2 0  0  0 0 | 1 1  0  1 2 0
.. .. .. x.    |  2  0 |  * 10   *  *  *  * |  0  3  0  0  0  6  0  0  0  0  0 | 0 3  0  0  3  0  3  6 0  0  0 0 | 1 0  1  3 3 0
oo3oo3oo3oo&#x |  1  1 |  *  * 120  *  *  * |  0  0  1  1  1  1  0  0  0  0  0 | 0 0  1  1  1  1  1  1 0  0  0 0 | 0 1  1  1 1 0
.x .. .. ..    |  0  2 |  *  *   * 30  *  * |  0  0  1  0  0  0  2  2  0  0  0 | 0 0  2  1  2  0  0  0 1  2  1 0 | 0 1  2  1 0 1
.. .x .. ..    |  0  2 |  *  *   *  * 60  * |  0  0  0  1  0  0  1  0  1  1  0 | 0 0  1  0  0  1  1  0 1  1  0 1 | 0 1  1  0 1 1
.. .. .. .x    |  0  2 |  *  *   *  *  * 60 |  0  0  0  0  0  1  0  1  0  1  1 | 0 0  0  0  1  0  1  1 0  1  1 1 | 0 0  1  1 1 1
---------------+-------+--------------------+----------------------------------+---------------------------------+--------------
.. o.3x. ..    |  3  0 |  3  0   0  0  0  0 | 20  *  *  *  *  *  *  *  *  *  * | 1 1  0  0  0  1  0  0 0  0  0 0 | 1 1  0  0 1 0
.. .. x.3x.    |  6  0 |  3  3   0  0  0  0 |  * 10  *  *  *  *  *  *  *  *  * | 0 2  0  0  0  0  0  2 0  0  0 0 | 1 0  0  1 2 0
ox .. .. ..&#x |  1  2 |  0  0   2  1  0  0 |  *  * 60  *  *  *  *  *  *  *  * | 0 0  1  1  1  0  0  0 0  0  0 0 | 0 1  1  1 0 0
.. ox .. ..&#x |  1  2 |  0  0   2  0  1  0 |  *  *  * 60  *  *  *  *  *  *  * | 0 0  1  0  0  1  1  0 0  0  0 0 | 0 1  1  0 1 0
.. .. xo ..&#x |  2  1 |  1  0   2  0  0  0 |  *  *  *  * 60  *  *  *  *  *  * | 0 0  0  1  0  1  0  1 0  0  0 0 | 0 1  0  1 1 0
.. .. .. xx&#x |  2  2 |  0  1   2  0  0  1 |  *  *  *  *  * 60  *  *  *  *  * | 0 0  0  0  1  0  1  1 0  0  0 0 | 0 0  1  1 1 0
.x3.x .. ..    |  0  6 |  0  0   0  3  3  0 |  *  *  *  *  *  * 20  *  *  *  * | 0 0  1  0  0  0  0  0 1  1  0 0 | 0 1  1  0 0 1
.x .. .. .x    |  0  4 |  0  0   0  2  0  2 |  *  *  *  *  *  *  * 30  *  *  * | 0 0  0  0  1  0  0  0 0  1  1 0 | 0 0  1  1 0 1
.. .x3.o ..    |  0  3 |  0  0   0  0  3  0 |  *  *  *  *  *  *  *  * 20  *  * | 0 0  0  0  0  1  0  0 1  0  0 1 | 0 1  0  0 1 1
.. .x .. .x    |  0  4 |  0  0   0  0  2  2 |  *  *  *  *  *  *  *  *  * 30  * | 0 0  0  0  0  0  1  0 0  1  0 1 | 0 0  1  0 1 1
.. .. .o3.x    |  0  3 |  0  0   0  0  0  3 |  *  *  *  *  *  *  *  *  *  * 20 | 0 0  0  0  0  0  0  1 0  0  1 1 | 0 0  0  1 1 1
---------------+-------+--------------------+----------------------------------+---------------------------------+--------------
o.3o.3x. ..    ♦  4  0 |  6  0   0  0  0  0 |  4  0  0  0  0  0  0  0  0  0  0 | 5 *  *  *  *  *  *  * *  *  * * | 1 1  0  0 0 0
.. o.3x.3x.    ♦ 12  0 | 12  6   0  0  0  0 |  4  4  0  0  0  0  0  0  0  0  0 | * 5  *  *  *  *  *  * *  *  * * | 1 0  0  0 1 0
ox3ox .. ..&#x ♦  1  6 |  0  0   6  3  3  0 |  0  0  3  3  0  0  1  0  0  0  0 | * * 20  *  *  *  *  * *  *  * * | 0 1  1  0 0 0
ox .. xo ..&#x ♦  2  2 |  1  0   4  1  0  0 |  0  0  2  0  2  0  0  0  0  0  0 | * *  * 30  *  *  *  * *  *  * * | 0 1  0  1 0 0
ox .. .. xx&#x ♦  2  4 |  0  1   4  2  0  2 |  0  0  2  0  0  2  0  1  0  0  0 | * *  *  * 30  *  *  * *  *  * * | 0 0  1  1 0 0
.. ox3xo ..&#x ♦  3  3 |  3  0   6  0  3  0 |  1  0  0  3  3  0  0  0  1  0  0 | * *  *  *  * 20  *  * *  *  * * | 0 1  0  0 1 0
.. ox .. xx&#x ♦  2  4 |  0  1   4  0  2  2 |  0  0  0  2  0  2  0  0  0  1  0 | * *  *  *  *  * 30  * *  *  * * | 0 0  1  0 1 0
.. .. xo3xx&#x ♦  6  3 |  3  3   6  0  0  3 |  0  1  0  0  3  3  0  0  0  0  1 | * *  *  *  *  *  * 20 *  *  * * | 0 0  0  1 1 0
.x3.x3.o ..    ♦  0 12 |  0  0   0  6 12  0 |  0  0  0  0  0  0  4  0  4  0  0 | * *  *  *  *  *  *  * 5  *  * * | 0 1  0  0 0 1
.x3.x .. .x    ♦  0 12 |  0  0   0  6  6  6 |  0  0  0  0  0  0  2  3  0  3  0 | * *  *  *  *  *  *  * * 10  * * | 0 0  1  0 0 1
.x .. .o3.x    ♦  0  6 |  0  0   0  3  0  6 |  0  0  0  0  0  0  0  3  0  0  2 | * *  *  *  *  *  *  * *  * 10 * | 0 0  0  1 0 1
.. .x3.o3.x    ♦  0 12 |  0  0   0  0 12 12 |  0  0  0  0  0  0  0  0  4  6  4 | * *  *  *  *  *  *  * *  *  * 5 | 0 0  0  0 1 1
---------------+-------+--------------------+----------------------------------+---------------------------------+--------------
o.3o.3x.3x.    ♦ 20  0 | 30 10   0  0  0  0 | 20 10  0  0  0  0  0  0  0  0  0 | 5 5  0  0  0  0  0  0 0  0  0 0 | 1 *  *  * * *
ox3ox3xo ..&#x ♦  4 12 |  6  0  24  6 12  0 |  4  0 12 12 12  0  4  0  4  0  0 | 1 0  4  6  0  4  0  0 1  0  0 0 | * 5  *  * * *
ox3ox .. xx&#x ♦  2 12 |  0  1  12  6  6  6 |  0  0  6  6  0  6  2  3  0  3  0 | 0 0  2  0  3  0  3  0 0  1  0 0 | * * 10  * * *
ox .. xo3xx&#x ♦  6  6 |  3  3  12  3  0  6 |  0  1  6  0  6  6  0  3  0  0  2 | 0 0  0  3  3  0  0  2 0  0  1 0 | * *  * 10 * *
.. ox3xo3xx&#x ♦ 12 12 | 12  6  24  0 12 12 |  4  4  0 12 12 12  0  0  4  6  4 | 0 1  0  0  0  4  6  4 0  0  0 1 | * *  *  * 5 *
.x3.x3.o3.x    ♦  0 60 |  0  0   0 30 60 60 |  0  0  0  0  0  0 20 30 20 30 20 | 0 0  0  0  0  0  0  0 5 10 10 5 | * *  *  * * 1
```