Acronym | quit gissiddip |
Name | quasitruncated-great-stellated-dodecahedron prism |
Circumradius | sqrt[(39-15 sqrt(5))/8] = 0.826058 |
Dihedral angles |
|
Face vector | 120, 240, 144, 34 |
Confer |
|
External links |
As abstract polytope quit gissiddip is isomorphic to tiddip, thereby replacing decagrams by decagons, resp. replacing quit gissid by tid and stiddip by dip.
Incidence matrix according to Dynkin symbol
x o3x5/3x . . . . | 120 | 1 2 1 | 2 1 1 2 | 1 2 1 ----------+-----+-----------+-------------+-------- x . . . | 2 | 60 * * | 2 1 0 0 | 1 2 0 . . x . | 2 | * 120 * | 1 0 1 1 | 1 1 1 . . . x | 2 | * * 60 | 0 1 0 2 | 0 2 1 ----------+-----+-----------+-------------+-------- x . x . | 4 | 2 2 0 | 60 * * * | 1 1 0 x . . x | 4 | 2 0 2 | * 30 * * | 0 2 0 . o3x . | 3 | 0 3 0 | * * 40 * | 1 0 1 . . x5/3x | 10 | 0 5 5 | * * * 24 | 0 1 1 ----------+-----+-----------+-------------+-------- x o3x . ♦ 6 | 3 6 0 | 3 0 2 0 | 20 * * x . x5/3x ♦ 20 | 10 10 10 | 5 5 0 2 | * 12 * . o3x5/3x ♦ 60 | 0 60 30 | 0 0 20 12 | * * 2
x o3/2x5/3x . . . . | 120 | 1 2 1 | 2 1 1 2 | 1 2 1 ------------+-----+-----------+-------------+-------- x . . . | 2 | 60 * * | 2 1 0 0 | 1 2 0 . . x . | 2 | * 120 * | 1 0 1 1 | 1 1 1 . . . x | 2 | * * 60 | 0 1 0 2 | 0 2 1 ------------+-----+-----------+-------------+-------- x . x . | 4 | 2 2 0 | 60 * * * | 1 1 0 x . . x | 4 | 2 0 2 | * 30 * * | 0 2 0 . o3/2x . | 3 | 0 3 0 | * * 40 * | 1 0 1 . . x5/3x | 10 | 0 5 5 | * * * 24 | 0 1 1 ------------+-----+-----------+-------------+-------- x o3/2x . ♦ 6 | 3 6 0 | 3 0 2 0 | 20 * * x . x5/3x ♦ 20 | 10 10 10 | 5 5 0 2 | * 12 * . o3/2x5/3x ♦ 60 | 0 60 30 | 0 0 20 12 | * * 2
oo3xx5/3xx&#x → height = 1
(quit gissid || quit gissid)
o.3o.5/3o. | 60 * | 2 1 1 0 0 | 1 2 2 1 0 0 | 1 1 2 0
.o3.o5/3.o | * 60 | 0 0 1 2 1 | 0 0 2 1 1 2 | 0 1 2 1
--------------+-------+----------------+-------------------+----------
.. x. .. | 2 0 | 60 * * * * | 1 1 1 0 0 0 | 1 1 1 0
.. .. x. | 2 0 | * 30 * * * | 0 2 0 1 0 0 | 1 0 2 0
oo3oo5/3oo&#x | 1 1 | * * 60 * * | 0 0 2 1 0 0 | 0 1 2 0
.. .x .. | 0 2 | * * * 60 * | 0 0 1 0 1 1 | 0 1 1 1
.. .. .x | 0 2 | * * * * 30 | 0 0 0 1 0 2 | 0 0 2 1
--------------+-------+----------------+-------------------+----------
o.3x. .. | 3 0 | 3 0 0 0 0 | 20 * * * * * | 1 1 0 0
.. x.5/3x. | 10 0 | 5 5 0 0 0 | * 12 * * * * | 1 0 1 0
.. xx ..&#x | 2 2 | 1 0 2 1 0 | * * 60 * * * | 0 1 1 0
.. .. xx&#x | 2 2 | 0 1 2 0 1 | * * * 30 * * | 0 0 2 0
.o3.x .. | 0 3 | 0 0 0 3 0 | * * * * 20 * | 0 1 0 1
.. .x5/3.x | 0 10 | 0 0 0 5 5 | * * * * * 12 | 0 0 1 1
--------------+-------+----------------+-------------------+----------
o.3x.5/3x. ♦ 60 0 | 60 30 0 0 0 | 20 12 0 0 0 0 | 1 * * *
oo3xx ..&#x ♦ 3 3 | 3 0 3 3 0 | 1 0 3 0 1 0 | * 20 * *
.. xx5/3xx&#x ♦ 10 10 | 5 5 10 5 5 | 0 1 5 5 0 1 | * * 12 *
.o3.x5/3.x ♦ 0 60 | 0 0 0 60 30 | 0 0 0 0 20 12 | * * * 1
© 2004-2024 | top of page |