Acronym quit gissiddip
Name quasitruncated-great-stellated-dodecahedron prism
Circumradius sqrt[(39-15 sqrt(5))/8] = 0.826058
Dihedral angles
Face vector 120, 240, 144, 34
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki

As abstract polytope quit gissiddip is isomorphic to tiddip, thereby replacing decagrams by decagons, resp. replacing quit gissid by tid and stiddip by dip.


Incidence matrix according to Dynkin symbol

x o3x5/3x

. . .   . | 120 |  1   2  1 |  2  1  1  2 |  1  2 1
----------+-----+-----------+-------------+--------
x . .   . |   2 | 60   *  * |  2  1  0  0 |  1  2 0
. . x   . |   2 |  * 120  * |  1  0  1  1 |  1  1 1
. . .   x |   2 |  *   * 60 |  0  1  0  2 |  0  2 1
----------+-----+-----------+-------------+--------
x . x   . |   4 |  2   2  0 | 60  *  *  * |  1  1 0
x . .   x |   4 |  2   0  2 |  * 30  *  * |  0  2 0
. o3x   . |   3 |  0   3  0 |  *  * 40  * |  1  0 1
. . x5/3x |  10 |  0   5  5 |  *  *  * 24 |  0  1 1
----------+-----+-----------+-------------+--------
x o3x   .    6 |  3   6  0 |  3  0  2  0 | 20  * *
x . x5/3x   20 | 10  10 10 |  5  5  0  2 |  * 12 *
. o3x5/3x   60 |  0  60 30 |  0  0 20 12 |  *  * 2

x o3/2x5/3x

. .   .   . | 120 |  1   2  1 |  2  1  1  2 |  1  2 1
------------+-----+-----------+-------------+--------
x .   .   . |   2 | 60   *  * |  2  1  0  0 |  1  2 0
. .   x   . |   2 |  * 120  * |  1  0  1  1 |  1  1 1
. .   .   x |   2 |  *   * 60 |  0  1  0  2 |  0  2 1
------------+-----+-----------+-------------+--------
x .   x   . |   4 |  2   2  0 | 60  *  *  * |  1  1 0
x .   .   x |   4 |  2   0  2 |  * 30  *  * |  0  2 0
. o3/2x   . |   3 |  0   3  0 |  *  * 40  * |  1  0 1
. .   x5/3x |  10 |  0   5  5 |  *  *  * 24 |  0  1 1
------------+-----+-----------+-------------+--------
x o3/2x   .    6 |  3   6  0 |  3  0  2  0 | 20  * *
x .   x5/3x   20 | 10  10 10 |  5  5  0  2 |  * 12 *
. o3/2x5/3x   60 |  0  60 30 |  0  0 20 12 |  *  * 2

oo3xx5/3xx&#x   → height = 1
(quit gissid || quit gissid)

o.3o.5/3o.    | 60  * |  2  1  1  0  0 |  1  2  2  1  0  0 | 1  1  2 0
.o3.o5/3.o    |  * 60 |  0  0  1  2  1 |  0  0  2  1  1  2 | 0  1  2 1
--------------+-------+----------------+-------------------+----------
.. x.   ..    |  2  0 | 60  *  *  *  * |  1  1  1  0  0  0 | 1  1  1 0
.. ..   x.    |  2  0 |  * 30  *  *  * |  0  2  0  1  0  0 | 1  0  2 0
oo3oo5/3oo&#x |  1  1 |  *  * 60  *  * |  0  0  2  1  0  0 | 0  1  2 0
.. .x   ..    |  0  2 |  *  *  * 60  * |  0  0  1  0  1  1 | 0  1  1 1
.. ..   .x    |  0  2 |  *  *  *  * 30 |  0  0  0  1  0  2 | 0  0  2 1
--------------+-------+----------------+-------------------+----------
o.3x.   ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  * | 1  1  0 0
.. x.5/3x.    | 10  0 |  5  5  0  0  0 |  * 12  *  *  *  * | 1  0  1 0
.. xx   ..&#x |  2  2 |  1  0  2  1  0 |  *  * 60  *  *  * | 0  1  1 0
.. ..   xx&#x |  2  2 |  0  1  2  0  1 |  *  *  * 30  *  * | 0  0  2 0
.o3.x   ..    |  0  3 |  0  0  0  3  0 |  *  *  *  * 20  * | 0  1  0 1
.. .x5/3.x    |  0 10 |  0  0  0  5  5 |  *  *  *  *  * 12 | 0  0  1 1
--------------+-------+----------------+-------------------+----------
o.3x.5/3x.     60  0 | 60 30  0  0  0 | 20 12  0  0  0  0 | 1  *  * *
oo3xx   ..&#x   3  3 |  3  0  3  3  0 |  1  0  3  0  1  0 | * 20  * *
.. xx5/3xx&#x  10 10 |  5  5 10  5  5 |  0  1  5  5  0  1 | *  * 12 *
.o3.x5/3.x      0 60 |  0  0  0 60 30 |  0  0  0  0 20 12 | *  *  * 1

© 2004-2024
top of page