Acronym quit gissiddip Name quasitruncated-great-stellated-dodecahedron prism Circumradius sqrt[(39-15 sqrt(5))/8] = 0.826058 Dihedral angles at {10/3} between quit gissid and stiddip:   90° at {3} between quit gissid and trip:   90° at {4} between stiddip and trip:   arccos(arccos(sqrt[(5-2 sqrt(5))/15]) = 79.187683° at {4} between stiddip and stiddip:   arccos(1/sqrt(5)) = 63.434949° Externallinks

As abstract polytope quit gissiddip is isomorphic to tiddip, thereby replacing decagrams by decagons, resp. replacing quit gissid by tid and stiddip by dip.

Incidence matrix according to Dynkin symbol

```x o3x5/3x

. . .   . | 120 |  1   2  1 |  2  1  1  2 |  1  2 1
----------+-----+-----------+-------------+--------
x . .   . |   2 | 60   *  * |  2  1  0  0 |  1  2 0
. . x   . |   2 |  * 120  * |  1  0  1  1 |  1  1 1
. . .   x |   2 |  *   * 60 |  0  1  0  2 |  0  2 1
----------+-----+-----------+-------------+--------
x . x   . |   4 |  2   2  0 | 60  *  *  * |  1  1 0
x . .   x |   4 |  2   0  2 |  * 30  *  * |  0  2 0
. o3x   . |   3 |  0   3  0 |  *  * 40  * |  1  0 1
. . x5/3x |  10 |  0   5  5 |  *  *  * 24 |  0  1 1
----------+-----+-----------+-------------+--------
x o3x   . ♦   6 |  3   6  0 |  3  0  2  0 | 20  * *
x . x5/3x ♦  20 | 10  10 10 |  5  5  0  2 |  * 12 *
. o3x5/3x ♦  60 |  0  60 30 |  0  0 20 12 |  *  * 2
```

```x o3/2x5/3x

. .   .   . | 120 |  1   2  1 |  2  1  1  2 |  1  2 1
------------+-----+-----------+-------------+--------
x .   .   . |   2 | 60   *  * |  2  1  0  0 |  1  2 0
. .   x   . |   2 |  * 120  * |  1  0  1  1 |  1  1 1
. .   .   x |   2 |  *   * 60 |  0  1  0  2 |  0  2 1
------------+-----+-----------+-------------+--------
x .   x   . |   4 |  2   2  0 | 60  *  *  * |  1  1 0
x .   .   x |   4 |  2   0  2 |  * 30  *  * |  0  2 0
. o3/2x   . |   3 |  0   3  0 |  *  * 40  * |  1  0 1
. .   x5/3x |  10 |  0   5  5 |  *  *  * 24 |  0  1 1
------------+-----+-----------+-------------+--------
x o3/2x   . ♦   6 |  3   6  0 |  3  0  2  0 | 20  * *
x .   x5/3x ♦  20 | 10  10 10 |  5  5  0  2 |  * 12 *
. o3/2x5/3x ♦  60 |  0  60 30 |  0  0 20 12 |  *  * 2
```

```oo3xx5/3xx&#x   → height = 1
(quit gissid || quit gissid)

o.3o.5/3o.    | 60  * |  2  1  1  0  0 |  1  2  2  1  0  0 | 1  1  2 0
.o3.o5/3.o    |  * 60 |  0  0  1  2  1 |  0  0  2  1  1  2 | 0  1  2 1
--------------+-------+----------------+-------------------+----------
.. x.   ..    |  2  0 | 60  *  *  *  * |  1  1  1  0  0  0 | 1  1  1 0
.. ..   x.    |  2  0 |  * 30  *  *  * |  0  2  0  1  0  0 | 1  0  2 0
oo3oo5/3oo&#x |  1  1 |  *  * 60  *  * |  0  0  2  1  0  0 | 0  1  2 0
.. .x   ..    |  0  2 |  *  *  * 60  * |  0  0  1  0  1  1 | 0  1  1 1
.. ..   .x    |  0  2 |  *  *  *  * 30 |  0  0  0  1  0  2 | 0  0  2 1
--------------+-------+----------------+-------------------+----------
o.3x.   ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  * | 1  1  0 0
.. x.5/3x.    | 10  0 |  5  5  0  0  0 |  * 12  *  *  *  * | 1  0  1 0
.. xx   ..&#x |  2  2 |  1  0  2  1  0 |  *  * 60  *  *  * | 0  1  1 0
.. ..   xx&#x |  2  2 |  0  1  2  0  1 |  *  *  * 30  *  * | 0  0  2 0
.o3.x   ..    |  0  3 |  0  0  0  3  0 |  *  *  *  * 20  * | 0  1  0 1
.. .x5/3.x    |  0 10 |  0  0  0  5  5 |  *  *  *  *  * 12 | 0  0  1 1
--------------+-------+----------------+-------------------+----------
o.3x.5/3x.    ♦ 60  0 | 60 30  0  0  0 | 20 12  0  0  0  0 | 1  *  * *
oo3xx   ..&#x ♦  3  3 |  3  0  3  3  0 |  1  0  3  0  1  0 | * 20  * *
.. xx5/3xx&#x ♦ 10 10 |  5  5 10  5  5 |  0  1  5  5  0  1 | *  * 12 *
.o3.x5/3.x    ♦  0 60 |  0  0  0 60 30 |  0  0  0  0 20 12 | *  *  * 1
```