Acronym thrathibbit
Name trihexagonal-rhombitrihexagonal duoprismatic tetracomb

Incidence matrix according to Dynkin symbol

x3o6x o3x6o   (N → ∞)

. . . . . . | 18N |   2   2   4 |  1  2   8  1   8   2  2 |   4   8   4  4  4   4  4 |  2  2  4  4  2 2
------------+-----+-------------+-------------------------+--------------------------+-----------------
x . . . . . |   2 | 18N   *   * |  1  1   4  0   0   0  0 |   4   4   2  2  0   0  0 |  2  2  2  2  0 0
. . x . . . |   2 |   * 18N   * |  0  1   0  1   4   0  0 |   0   4   0  0  4   2  2 |  0  0  2  2  2 2
. . . . x . |   2 |   *   * 36N |  0  0   2  0   2   1  1 |   1   2   2  2  1   2  2 |  1  1  2  2  1 1
------------+-----+-------------+-------------------------+--------------------------+-----------------
x3o . . . . |   3 |   3   0   0 | 6N  *   *  *   *   *  * |   4   0   0  0  0   0  0 |  2  2  0  0  0 0
x . x . . . |   4 |   2   2   0 |  * 9N   *  *   *   *  * |   0   4   0  0  0   0  0 |  0  0  2  2  0 0
x . . . x . |   4 |   2   0   2 |  *  * 36N  *   *   *  * |   1   1   1  1  0   0  0 |  1  1  1  1  0 0
. o6x . . . |   6 |   0   6   0 |  *  *   * 3N   *   *  * |   0   0   0  0  4   0  0 |  0  0  0  0  2 2
. . x . x . |   4 |   0   2   2 |  *  *   *  * 36N   *  * |   0   1   0  0  1   1  1 |  0  0  1  1  1 1
. . . o3x . |   3 |   0   0   3 |  *  *   *  *   * 12N  * |   0   0   2  0  0   2  0 |  1  0  2  0  1 0
. . . . x6o |   6 |   0   0   6 |  *  *   *  *   *   * 6N |   0   0   0  2  0   0  2 |  0  1  0  2  0 1
------------+-----+-------------+-------------------------+--------------------------+-----------------
x3o . . x .    6 |   6   0   3 |  2  0   3  0   0   0  0 | 12N   *   *  *  *   *  * |  1  1  0  0  0 0
x . x . x .    8 |   4   4   4 |  0  2   2  0   2   0  0 |   * 18N   *  *  *   *  * |  0  0  1  1  0 0
x . . o3x .    6 |   3   0   6 |  0  0   3  0   0   2  0 |   *   * 12N  *  *   *  * |  1  0  1  0  0 0
x . . . x6o   12 |   6   0  12 |  0  0   6  0   0   0  2 |   *   *   * 6N  *   *  * |  0  1  0  1  0 0
. o6x . x .   12 |   0  12   6 |  0  0   0  2   6   0  0 |   *   *   *  * 6N   *  * |  0  0  0  0  1 1
. . x o3x .    6 |   0   3   6 |  0  0   0  0   3   2  0 |   *   *   *  *  * 12N  * |  0  0  1  0  1 0
. . x . x6o   12 |   0   6  12 |  0  0   0  0   6   0  2 |   *   *   *  *  *   * 6N |  0  0  0  1  0 1
------------+-----+-------------+-------------------------+--------------------------+-----------------
x3o . o3x .    9 |   9   0   9 |  3  0   9  0   0   3  0 |   3   0   3  0  0   0  0 | 4N  *  *  *  * *
x3o . . x6o   18 |  18   0  18 |  6  0  18  0   0   0  3 |   6   0   0  3  0   0  0 |  * 2N  *  *  * *
x . x o3x .   12 |   6   6  12 |  0  3   6  0   6   4  0 |   0   3   2  0  0   2  0 |  *  * 6N  *  * *
x . x . x6o   24 |  12  12  24 |  0  6  12  0  12   0  4 |   0   6   0  2  0   0  2 |  *  *  * 3N  * *
. o6x o3x .   18 |   0  18  18 |  0  0   0  3  18   6  0 |   0   0   0  0  3   6  0 |  *  *  *  * 2N *
. o6x . x6o   36 |   0  36  36 |  0  0   0  6  36   0  6 |   0   0   0  0  6   0  6 |  *  *  *  *  * N


x3o6x x3x3o3*d   (N → ∞) . . . . . . | 18N | 2 2 2 2 | 1 2 4 4 1 4 4 2 1 1 | 2 2 4 4 4 2 2 2 2 4 2 2 | 2 1 1 4 2 2 2 1 1 ---------------+-----+-----------------+-----------------------------------+-------------------------------------+------------------------ x . . . . . | 2 | 18N * * * | 1 1 2 2 0 0 0 0 0 0 | 2 2 2 2 2 1 1 0 0 0 0 0 | 2 1 1 2 1 1 0 0 0 . . x . . . | 2 | * 18N * * | 0 1 0 0 1 2 2 0 0 0 | 0 0 2 2 0 0 0 2 2 2 1 1 | 0 0 0 2 1 1 2 1 1 . . . x . . | 2 | * * 18N * | 0 0 2 0 0 2 0 1 1 0 | 1 0 2 0 2 2 0 1 0 2 2 0 | 1 1 0 2 2 0 1 1 0 . . . . x . | 2 | * * * 18N | 0 0 0 2 0 0 2 1 0 1 | 0 1 0 2 2 0 2 0 1 2 0 2 | 1 0 1 2 0 2 1 0 1 ---------------+-----+-----------------+-----------------------------------+-------------------------------------+------------------------ x3o . . . . | 3 | 3 0 0 0 | 6N * * * * * * * * * | 2 2 0 0 0 0 0 0 0 0 0 0 | 2 1 1 0 0 0 0 0 0 x . x . . . | 4 | 2 2 0 0 | * 9N * * * * * * * * | 0 0 2 2 0 0 0 0 0 0 0 0 | 0 0 0 2 1 1 0 0 0 x . . x . . | 4 | 2 0 2 0 | * * 18N * * * * * * * | 1 0 1 0 1 1 0 0 0 0 0 0 | 1 1 0 1 1 0 0 0 0 x . . . x . | 4 | 2 0 0 2 | * * * 18N * * * * * * | 0 1 0 1 1 0 1 0 0 0 0 0 | 1 0 1 1 0 1 0 0 0 . o6x . . . | 6 | 0 6 0 0 | * * * * 3N * * * * * | 0 0 0 0 0 0 0 2 2 0 0 0 | 0 0 0 0 0 0 2 1 1 . . x x . . | 4 | 0 2 2 0 | * * * * * 18N * * * * | 0 0 1 0 0 0 0 1 0 1 1 0 | 0 0 0 1 1 0 1 1 0 . . x . x . | 4 | 0 2 0 2 | * * * * * * 18N * * * | 0 0 0 1 0 0 0 0 1 1 0 1 | 0 0 0 1 0 1 1 0 1 . . . x3x . | 6 | 0 0 3 3 | * * * * * * * 6N * * | 0 0 0 0 2 0 0 0 0 2 0 0 | 1 0 0 2 0 0 1 0 0 . . . x . o3*d | 3 | 0 0 3 0 | * * * * * * * * 6N * | 0 0 0 0 0 2 0 0 0 0 2 0 | 0 1 0 0 2 0 0 1 0 . . . . x3o | 3 | 0 0 0 3 | * * * * * * * * * 6N | 0 0 0 0 0 0 2 0 0 0 0 2 | 0 0 1 0 0 2 0 0 1 ---------------+-----+-----------------+-----------------------------------+-------------------------------------+------------------------ x3o . x . . 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 0 0 | 6N * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 x3o . . x . 6 | 6 0 0 3 | 2 0 0 3 0 0 0 0 0 0 | * 6N * * * * * * * * * * | 1 0 1 0 0 0 0 0 0 x . x x . . 8 | 4 4 4 0 | 0 2 2 0 0 2 0 0 0 0 | * * 9N * * * * * * * * * | 0 0 0 1 1 0 0 0 0 x . x . x . 8 | 4 4 0 4 | 0 2 0 2 0 0 2 0 0 0 | * * * 9N * * * * * * * * | 0 0 0 1 0 1 0 0 0 x . . x3x . 12 | 6 0 6 6 | 0 0 3 3 0 0 0 2 0 0 | * * * * 6N * * * * * * * | 1 0 0 1 0 0 0 0 0 x . . x . o3*d 6 | 3 0 6 0 | 0 0 3 0 0 0 0 0 2 0 | * * * * * 6N * * * * * * | 0 1 0 0 1 0 0 0 0 x . . . x3o 6 | 3 0 0 6 | 0 0 0 3 0 0 0 0 0 2 | * * * * * * 6N * * * * * | 0 0 1 0 0 1 0 0 0 . o6x x . . 12 | 0 12 6 0 | 0 0 0 0 2 6 0 0 0 0 | * * * * * * * 3N * * * * | 0 0 0 0 0 0 1 1 0 . o6x . x . 12 | 0 12 0 6 | 0 0 0 0 2 0 6 0 0 0 | * * * * * * * * 3N * * * | 0 0 0 0 0 0 1 0 1 . . x x3x . 12 | 0 6 6 6 | 0 0 0 0 0 3 3 2 0 0 | * * * * * * * * * 6N * * | 0 0 0 1 0 0 1 0 0 . . x x . o3*d 6 | 0 3 6 0 | 0 0 0 0 0 3 0 0 2 0 | * * * * * * * * * * 6N * | 0 0 0 0 1 0 0 1 0 . . x . x3o 6 | 0 3 0 6 | 0 0 0 0 0 0 3 0 0 2 | * * * * * * * * * * * 6N | 0 0 0 0 0 1 0 0 1 ---------------+-----+-----------------+-----------------------------------+-------------------------------------+------------------------ x3o . x3x . 18 | 18 0 9 9 | 6 0 9 9 0 0 0 3 0 0 | 3 3 0 0 3 0 0 0 0 0 0 0 | 2N * * * * * * * * x3o . x . o3*d 9 | 9 0 9 0 | 3 0 9 0 0 0 0 0 3 0 | 3 0 0 0 0 3 0 0 0 0 0 0 | * 2N * * * * * * * x3o . . o3x 9 | 9 0 0 9 | 3 0 0 9 0 0 0 0 0 3 | 0 3 0 0 0 0 3 0 0 0 0 0 | * * 2N * * * * * * x . x x3x . 24 | 12 12 12 12 | 0 6 6 6 0 6 6 4 0 0 | 0 0 3 3 2 0 0 0 0 2 0 0 | * * * 3N * * * * * x . x x . o3*d 12 | 6 6 12 0 | 0 3 6 0 0 6 0 0 4 0 | 0 0 3 0 0 2 0 0 0 0 2 0 | * * * * 3N * * * * x . x . x3o 12 | 6 6 0 12 | 0 3 0 6 0 0 6 0 0 4 | 0 0 0 3 0 0 2 0 0 0 0 2 | * * * * * 3N * * * . o6x x3x . 36 | 0 36 18 18 | 0 0 0 0 6 18 18 6 0 0 | 0 0 0 0 0 0 0 3 3 6 0 0 | * * * * * * N * * . o6x x . o3*d 18 | 0 18 18 0 | 0 0 0 0 3 18 0 0 6 0 | 0 0 0 0 0 0 0 3 0 0 6 0 | * * * * * * * N * . o6x . x3o 18 | 0 18 0 18 | 0 0 0 0 3 0 18 0 0 6 | 0 0 0 0 0 0 0 0 3 0 0 6 | * * * * * * * * N

© 2004-2025
top of page