Acronym | tetacho |
Name | tetrahedron atop cubohemioctahedron |
Circumradius | 1 |
Face vector | 16, 42, 38, 12 |
Confer |
|
This polychoron is just an edge-faceting of tetaco.
Note that this reduction omits the x3/2x fully, while otherwise completely coincident elements become identified.
Incidence matrix according to Dynkin symbol
reduced( ox3/2ox3xx&#x by x3/2x ) → height = sqrt(5/8) = 0.790569
(tet || cho)
o.3/2o.3o. | 4 * | 3 3 0 0 | 3 3 6 0 0 | 1 3 3 0
reduced( .o3/2.o3.o ) | * 12 | 0 1 2 2 | 0 2 2 2 2 | 0 2 2 1
---------------------------+------+------------+-------------+--------
.. .. x. | 2 0 | 6 * * * | 2 0 2 0 0 | 1 1 2 0
oo3/2oo3oo&#x | 1 1 | * 12 * * | 0 2 2 0 0 | 0 2 2 0
reduced( .x .. .. & ) | 0 2 | * * 12 * | 0 1 0 1 1 | 0 1 1 1
.. .. .x | 0 2 | * * * 12 | 0 0 1 1 1 | 0 1 1 1
---------------------------+------+------------+-------------+--------
.. o.3x. | 3 0 | 3 0 0 0 | 4 * * * * | 1 0 1 0
reduced( ox .. ..&#x & ) | 1 2 | 0 2 1 0 | * 12 * * * | 0 1 1 0
.. .. xx&#x | 2 2 | 1 2 0 1 | * * 12 * * | 0 1 1 0
.x .. .x | 0 4 | 0 0 2 2 | * * * 6 * | 0 1 0 1
.. .x3.x | 0 6 | 0 0 3 3 | * * * * 4 | 0 0 1 1
---------------------------+------+------------+-------------+--------
o.3/2o.3x. ♦ 4 0 | 6 0 0 0 | 4 0 0 0 0 | 1 * * *
ox .. xx&#x ♦ 2 4 | 1 4 2 2 | 0 2 2 1 0 | * 6 * *
.. ox3xx&#x ♦ 3 6 | 3 6 3 3 | 1 3 3 0 1 | * * 4 *
reduced( .x3/2.x3.x ) ♦ 0 12 | 0 0 12 12 | 0 0 0 6 4 | * * * 1
reduced( xx3/2xx3ox&#x by x3/2x ) → height = sqrt(5/8) = 0.790569
(tet || cho)
reduced( o.3/2o.3o. ) | 4 * | 3 3 0 0 | 3 6 3 0 0 | 1 3 3 0
reduced( .o3/2.o3.o ) | * 12 | 0 1 2 2 | 0 2 2 2 2 | 0 2 2 1
---------------------------+------+------------+-------------+--------
reduced( x. .. .. & ) | 2 0 | 6 * * * | 2 2 0 0 0 | 1 1 2 0
oo3/2oo3oo&#x | 1 1 | * 12 * * | 0 2 2 0 0 | 0 2 2 0
reduced( .x .. .. & ) | 0 2 | * * 12 * | 0 1 0 1 1 | 0 1 1 1
.. .. .x | 0 2 | * * * 12 | 0 0 1 1 1 | 0 1 1 1
---------------------------+------+------------+-------------+--------
.. x.3o. | 3 0 | 3 0 0 0 | 4 * * * * | 1 0 1 0
reduced( xx .. ..&#x & ) | 2 2 | 1 2 1 0 | * 12 * * * | 0 1 1 0
.. .. ox&#x | 1 2 | 0 2 0 1 | * * 12 * * | 0 1 1 0
.x .. .x | 0 4 | 0 0 2 2 | * * * 6 * | 0 1 0 1
.. .x3.x | 0 6 | 0 0 3 3 | * * * * 4 | 0 0 1 1
---------------------------+------+------------+-------------+--------
reduced( x.3/2x.3o. ) ♦ 4 0 | 6 0 0 0 | 4 0 0 0 0 | 1 * * *
xx .. ox&#x ♦ 2 4 | 1 4 2 2 | 0 2 2 1 0 | * 6 * *
.. ox3xx&#x ♦ 3 6 | 3 6 3 3 | 1 3 3 0 1 | * * 4 *
reduced( .x3/2.x3.x ) ♦ 0 12 | 0 0 12 12 | 0 0 0 6 4 | * * * 1
© 2004-2025 | top of page |