Acronym | squati |
Name | square - truncated-icosahedron duoprism |
Circumradius | sqrt[(33+9 sqrt(5))/8] = 2.576932 |
Face vector | 240, 600, 548, 222, 36 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x4o x3x5o . . . . . | 240 | 2 1 2 | 1 2 4 2 1 | 1 2 4 2 1 | 2 1 2 ----------+-----+-------------+------------------+---------------+-------- x . . . . | 2 | 240 * * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . x . . | 2 | * 120 * | 0 2 0 2 0 | 1 0 4 0 1 | 2 0 2 . . . x . | 2 | * * 240 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ----------+-----+-------------+------------------+---------------+-------- x4o . . . | 4 | 4 0 0 | 60 * * * * | 1 2 0 0 0 | 2 1 0 x . x . . | 4 | 2 2 0 | * 120 * * * | 1 0 2 0 0 | 2 0 1 x . . x . | 4 | 2 0 2 | * * 240 * * | 0 1 1 1 0 | 1 1 1 . . x3x . | 6 | 0 3 3 | * * * 80 * | 0 0 2 0 1 | 1 0 2 . . . x5o | 5 | 0 0 5 | * * * * 48 | 0 0 0 2 1 | 0 1 2 ----------+-----+-------------+------------------+---------------+-------- x4o x . . ♦ 8 | 8 4 0 | 2 4 0 0 0 | 30 * * * * | 2 0 0 x4o . x . ♦ 8 | 8 0 4 | 2 0 4 0 0 | * 60 * * * | 1 1 0 x . x3x . ♦ 12 | 6 6 6 | 0 3 3 2 0 | * * 80 * * | 1 0 1 x . . x5o ♦ 10 | 5 0 10 | 0 0 5 0 2 | * * * 48 * | 0 1 1 . . x3x5o ♦ 60 | 0 30 60 | 0 0 0 20 12 | * * * * 4 | 0 0 2 ----------+-----+-------------+------------------+---------------+-------- x4o x3x . ♦ 24 | 24 12 12 | 6 12 12 4 0 | 3 3 4 0 0 | 20 * * x4o . x5o ♦ 20 | 20 0 20 | 5 0 20 0 4 | 0 5 0 4 0 | * 12 * x . x3x5o ♦ 120 | 60 60 120 | 0 30 60 40 24 | 0 0 20 12 2 | * * 4
x x x3x5o . . . . . | 240 | 1 1 1 2 | 1 1 2 1 2 2 1 | 1 2 2 1 2 1 1 | 2 1 1 1 ----------+-----+-----------------+------------------------+---------------------+---------- x . . . . | 2 | 120 * * * | 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 . x . . . | 2 | * 120 * * | 1 0 0 1 2 0 0 | 1 2 0 0 2 1 0 | 2 1 0 1 . . x . . | 2 | * * 120 * | 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 . . . x . | 2 | * * * 240 | 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 ----------+-----+-----------------+------------------------+---------------------+---------- x x . . . | 4 | 2 2 0 0 | 60 * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 0 2 0 | * 60 * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 0 2 | * * 120 * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 . x x . . | 4 | 0 2 2 0 | * * * 60 * * * | 1 0 0 0 2 0 0 | 2 0 0 1 . x . x . | 4 | 0 2 0 2 | * * * * 120 * * | 0 1 0 0 1 1 0 | 1 1 0 1 . . x3x . | 6 | 0 0 3 3 | * * * * * 80 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x5o | 5 | 0 0 0 5 | * * * * * * 48 | 0 0 0 1 0 1 1 | 0 1 1 1 ----------+-----+-----------------+------------------------+---------------------+---------- x x x . . ♦ 8 | 4 4 4 0 | 2 2 0 2 0 0 0 | 30 * * * * * * | 2 0 0 0 x x . x . ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 0 | * 60 * * * * * | 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 0 | * * 40 * * * * | 1 0 1 0 x . . x5o ♦ 10 | 5 0 0 10 | 0 0 5 0 0 0 2 | * * * 24 * * * | 0 1 1 0 . x x3x . ♦ 12 | 0 6 6 6 | 0 0 0 3 3 2 0 | * * * * 40 * * | 1 0 0 1 . x . x5o ♦ 10 | 0 5 0 10 | 0 0 0 0 5 0 2 | * * * * * 24 * | 0 1 0 1 . . x3x5o ♦ 60 | 0 0 30 60 | 0 0 0 0 0 20 12 | * * * * * * 4 | 0 0 1 1 ----------+-----+-----------------+------------------------+---------------------+---------- x x x3x . ♦ 24 | 12 12 12 12 | 6 6 6 6 6 4 0 | 3 3 2 0 2 0 0 | 20 * * * x x . x5o ♦ 20 | 10 10 0 20 | 5 0 10 0 10 0 4 | 0 5 0 2 0 2 0 | * 12 * * x . x3x5o ♦ 120 | 60 0 60 120 | 0 30 60 0 0 40 24 | 0 0 20 12 0 0 2 | * * 2 * . x x3x5o ♦ 120 | 0 60 60 120 | 0 0 0 30 60 40 24 | 0 0 0 0 20 12 2 | * * * 2
© 2004-2025 | top of page |