Acronym | ... |
Name | sishia + 2 2sishi |
Circumradius | sqrt[(7+sqrt(5))/8] = 1.074481 |
Confer | sishiap |
This holosnub indeed can be resized back to all unit edge lengths, resulting then in a blend of sishia with the bases being blended into Grünbaumian triple-covered sishis each. Accordingly the edges of 3sishi are and their faces as well as their cells look like being triply coincident each, while its vertices however are unique.
The vertex figure of "sishia + 2x 2sishi" is a variant of sissid || 3doe, in fact the version xv5/2ov5oo&#x.
Incidence matrix according to Dynkin symbol
β2β5o5/2o5o both( . . . . . ) | 240 | 12 60 | 30 90 60 | 30 12 72 12 | 12 1 13 --------------------+-----+-----------+----------------+------------------+---------- β2β . . . | 2 | 1440 * | 0 10 0 | 5 0 10 0 | 5 0 2 sefa( . β5o . . ) | 2 | * 7200 | 1 1 2 | 1 2 2 1 | 2 1 1 --------------------+-----+-----------+----------------+------------------+---------- . β5o . . ♦ 5 | 0 5 | 1440 * * | 1 2 0 0 | 2 1 0 {5/2} sefa( β2β5o . . ) | 3 | 2 1 | * 7200 * | 1 0 2 0 | 2 0 1 sefa( . β5o5/2o . ) | 5 | 0 5 | * * 2880 | 0 1 1 1 | 1 1 1 {5/2} --------------------+-----+-----------+----------------+------------------+---------- β2β5o . . ♦ 10 | 10 10 | 2 10 0 | 720 * * * | 2 0 0 . β5o5/2o . ♦ 12 | 0 60 | 12 0 12 | * 240 * * | 1 1 0 sefa( β2β5o5/2o . ) ♦ 6 | 5 5 | 0 5 1 | * * 2880 * | 1 0 1 sefa( . β5o5/2o5o ) ♦ 12 | 0 30 | 0 0 12 | * * * 240 | 0 1 1 --------------------+-----+-----------+----------------+------------------+---------- β2β5o5/2o . ♦ 24 | 60 120 | 24 120 24 | 12 2 24 0 | 120 * * . β5o5/2o5o ♦ 120 | 0 3600 | 720 0 1440 | 0 120 0 120 | * 2 * sefa( β2β5o5/2o5o ) ♦ 13 | 12 30 | 0 30 12 | 0 0 12 1 | * * 240 starting figure: x x5o5/2o5o
© 2004-2025 | top of page |