Acronym sidtiddip
Name small-ditrigonary-icosidodecahedron prism
Cross sections
 ©
Circumradius 1
Colonel of regiment (is itself locally convex – other uniform polyhedral members: ditdiddip   gidtiddip   & other)
Dihedral angles
  • at {4} between stip and trip:   arccos(-sqrt[(5+2 sqrt(5))/15]) = 142.622632°
  • at {5/2} between sidtid and stip:   90°
  • at {3} between sidtid and trip:   90°
Face vector 40, 140, 124, 34
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki  

As abstract polytope sidtiddip is isomorphic to gidtiddip, thereby replacing pentagrams by pentagons, resp. replacing stip by pip and sidtid by gidtid.


Incidence matrix according to Dynkin symbol

x x5/2o3o3*b

. .   . .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x .   . .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x   . .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/2o .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o3*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5/2o .     10 |  5  10 |  5  2  0 | 12  * *
x x   . o3*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5/2o3o3*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5/2o3/2o3/2*b

. .   .   .      | 40 |  1   6 |  6  3  3 |  3  3 1
-----------------+----+--------+----------+--------
x .   .   .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .      |  2 |  * 120 |  1  1  1 |  1  1 1
-----------------+----+--------+----------+--------
x x   .   .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/2o   .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o3/2*b |  3 |  0   3 |  *  * 40 |  0  1 1
-----------------+----+--------+----------+--------
x x5/2o   .       10 |  5  10 |  5  2  0 | 12  * *
x x   .   o3/2*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5/2o3/2o3/2*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5/3o3o3/2*b

. .   . .      | 40 |  1   6 |  6  3  3 |  3  3 1
---------------+----+--------+----------+--------
x .   . .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .      |  2 |  * 120 |  1  1  1 |  1  1 1
---------------+----+--------+----------+--------
x x   . .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/3o .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o3/2*b |  3 |  0   3 |  *  * 40 |  0  1 1
---------------+----+--------+----------+--------
x x5/3o .       10 |  5  10 |  5  2  0 | 12  * *
x x   . o3/2*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5/3o3o3/2*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5/3o3/2o3*b

. .   .   .    | 40 |  1   6 |  6  3  3 |  3  3 1
---------------+----+--------+----------+--------
x .   .   .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .    |  2 |  * 120 |  1  1  1 |  1  1 1
---------------+----+--------+----------+--------
x x   .   .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/3o   .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o3*b |  3 |  0   3 |  *  * 40 |  0  1 1
---------------+----+--------+----------+--------
x x5/3o   .     10 |  5  10 |  5  2  0 | 12  * *
x x   .   o3*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5/3o3/2o3*b  20 |  0  60 |  0 12 20 |  *  * 2

© 2004-2024
top of page