Acronym | sidtiddip |
Name | small-ditrigonary-icosidodecahedron prism |
Cross sections |
© |
Circumradius | 1 |
Colonel of regiment | (is itself locally convex – other uniform polyhedral members: ditdiddip gidtiddip & other) |
Dihedral angles | |
Face vector | 40, 140, 124, 34 |
Confer |
|
External links |
As abstract polytope sidtiddip is isomorphic to gidtiddip, thereby replacing pentagrams by pentagons, resp. replacing stip by pip and sidtid by gidtid.
Incidence matrix according to Dynkin symbol
x x5/2o3o3*b . . . . | 40 | 1 6 | 6 3 3 | 3 3 1 -------------+----+--------+----------+-------- x . . . | 2 | 20 * | 6 0 0 | 3 3 0 . x . . | 2 | * 120 | 1 1 1 | 1 1 1 -------------+----+--------+----------+-------- x x . . | 4 | 2 2 | 60 * * | 1 1 0 . x5/2o . | 5 | 0 5 | * 24 * | 1 0 1 . x . o3*b | 3 | 0 3 | * * 40 | 0 1 1 -------------+----+--------+----------+-------- x x5/2o . ♦ 10 | 5 10 | 5 2 0 | 12 * * x x . o3*b ♦ 6 | 3 6 | 3 0 2 | * 20 * . x5/2o3o3*b ♦ 20 | 0 60 | 0 12 20 | * * 2
x x5/2o3/2o3/2*b . . . . | 40 | 1 6 | 6 3 3 | 3 3 1 -----------------+----+--------+----------+-------- x . . . | 2 | 20 * | 6 0 0 | 3 3 0 . x . . | 2 | * 120 | 1 1 1 | 1 1 1 -----------------+----+--------+----------+-------- x x . . | 4 | 2 2 | 60 * * | 1 1 0 . x5/2o . | 5 | 0 5 | * 24 * | 1 0 1 . x . o3/2*b | 3 | 0 3 | * * 40 | 0 1 1 -----------------+----+--------+----------+-------- x x5/2o . ♦ 10 | 5 10 | 5 2 0 | 12 * * x x . o3/2*b ♦ 6 | 3 6 | 3 0 2 | * 20 * . x5/2o3/2o3/2*b ♦ 20 | 0 60 | 0 12 20 | * * 2
x x5/3o3o3/2*b . . . . | 40 | 1 6 | 6 3 3 | 3 3 1 ---------------+----+--------+----------+-------- x . . . | 2 | 20 * | 6 0 0 | 3 3 0 . x . . | 2 | * 120 | 1 1 1 | 1 1 1 ---------------+----+--------+----------+-------- x x . . | 4 | 2 2 | 60 * * | 1 1 0 . x5/3o . | 5 | 0 5 | * 24 * | 1 0 1 . x . o3/2*b | 3 | 0 3 | * * 40 | 0 1 1 ---------------+----+--------+----------+-------- x x5/3o . ♦ 10 | 5 10 | 5 2 0 | 12 * * x x . o3/2*b ♦ 6 | 3 6 | 3 0 2 | * 20 * . x5/3o3o3/2*b ♦ 20 | 0 60 | 0 12 20 | * * 2
x x5/3o3/2o3*b . . . . | 40 | 1 6 | 6 3 3 | 3 3 1 ---------------+----+--------+----------+-------- x . . . | 2 | 20 * | 6 0 0 | 3 3 0 . x . . | 2 | * 120 | 1 1 1 | 1 1 1 ---------------+----+--------+----------+-------- x x . . | 4 | 2 2 | 60 * * | 1 1 0 . x5/3o . | 5 | 0 5 | * 24 * | 1 0 1 . x . o3*b | 3 | 0 3 | * * 40 | 0 1 1 ---------------+----+--------+----------+-------- x x5/3o . ♦ 10 | 5 10 | 5 2 0 | 12 * * x x . o3*b ♦ 6 | 3 6 | 3 0 2 | * 20 * . x5/3o3/2o3*b ♦ 20 | 0 60 | 0 12 20 | * * 2
© 2004-2024 | top of page |