Acronym ditdiddip Name ditrigonal-dodecadodecahedron prism Cross sections ` ©` Circumradius 1 Colonel of regiment sidtiddip Dihedral angles at {5} between ditdid and pip:   90° at {5/2} between ditdid and stip:   90° at {4} between pip and stip:   arccos(1/sqrt(5)) = 63.434949° Externallinks

As abstract polytope ditdiddip is automorph, thereby interchanging the roles of pentagons and (retrograde) pentagrams, resp. those of pip and stip.

Incidence matrix according to Dynkin symbol

```x x5/2o3o5/4*b

. .   . .      | 40 |  1   6 |  6  3  3 |  3  3 1
---------------+----+--------+----------+--------
x .   . .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .      |  2 |  * 120 |  1  1  1 |  1  1 1
---------------+----+--------+----------+--------
x x   . .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/2o .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o5/4*b |  5 |  0   5 |  *  * 24 |  0  1 1
---------------+----+--------+----------+--------
x x5/2o .      ♦ 10 |  5  10 |  5  2  0 | 12  * *
x x   . o5/4*b ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. x5/2o3o5/4*b ♦ 20 |  0  60 |  0 12 12 |  *  * 2
```

```x x5/2o3/2o5*b

. .   .   .    | 40 |  1   6 |  6  3  3 |  3  3 1
---------------+----+--------+----------+--------
x .   .   .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .    |  2 |  * 120 |  1  1  1 |  1  1 1
---------------+----+--------+----------+--------
x x   .   .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/2o   .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o5*b |  5 |  0   5 |  *  * 24 |  0  1 1
---------------+----+--------+----------+--------
x x5/2o   .    ♦ 10 |  5  10 |  5  2  0 | 12  * *
x x   .   o5*b ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. x5/2o3/2o5*b ♦ 20 |  0  60 |  0 12 12 |  *  * 2
```

```x x5/3o3o5*b

. .   . .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x .   . .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x   . .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/3o .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o5*b |  5 |  0   5 |  *  * 24 |  0  1 1
-------------+----+--------+----------+--------
x x5/3o .    ♦ 10 |  5  10 |  5  2  0 | 12  * *
x x   . o5*b ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. x5/3o3o5*b ♦ 20 |  0  60 |  0 12 12 |  *  * 2
```

```x x5/3o3/2o5/4*b

. .   .   .      | 40 |  1   6 |  6  3  3 |  3  3 1
-----------------+----+--------+----------+--------
x .   .   .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .      |  2 |  * 120 |  1  1  1 |  1  1 1
-----------------+----+--------+----------+--------
x x   .   .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/3o   .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o5/4*b |  5 |  0   5 |  *  * 24 |  0  1 1
-----------------+----+--------+----------+--------
x x5/3o   .      ♦ 10 |  5  10 |  5  2  0 | 12  * *
x x   .   o5/4*b ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. x5/3o3/2o5/4*b ♦ 20 |  0  60 |  0 12 12 |  *  * 2
```

 © 2004-2021 top of page