Acronym ditdiddip
Name ditrigonal-dodecadodecahedron prism
Cross sections
 ©
Circumradius 1
Colonel of regiment sidtiddip
Dihedral angles
  • at {5} between ditdid and pip:   90°
  • at {5/2} between ditdid and stip:   90°
  • at {4} between pip and stip:   arccos(1/sqrt(5)) = 63.434949°
Face vector 40, 140, 108, 26
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki  

As abstract polytope ditdiddip is automorph, thereby interchanging the roles of pentagons and (retrograde) pentagrams, resp. those of pip and stip.


Incidence matrix according to Dynkin symbol

x x5/2o3o5/4*b

. .   . .      | 40 |  1   6 |  6  3  3 |  3  3 1
---------------+----+--------+----------+--------
x .   . .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .      |  2 |  * 120 |  1  1  1 |  1  1 1
---------------+----+--------+----------+--------
x x   . .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/2o .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o5/4*b |  5 |  0   5 |  *  * 24 |  0  1 1
---------------+----+--------+----------+--------
x x5/2o .       10 |  5  10 |  5  2  0 | 12  * *
x x   . o5/4*b  10 |  5  10 |  5  0  2 |  * 12 *
. x5/2o3o5/4*b  20 |  0  60 |  0 12 12 |  *  * 2

x x5/2o3/2o5*b

. .   .   .    | 40 |  1   6 |  6  3  3 |  3  3 1
---------------+----+--------+----------+--------
x .   .   .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .    |  2 |  * 120 |  1  1  1 |  1  1 1
---------------+----+--------+----------+--------
x x   .   .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/2o   .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o5*b |  5 |  0   5 |  *  * 24 |  0  1 1
---------------+----+--------+----------+--------
x x5/2o   .     10 |  5  10 |  5  2  0 | 12  * *
x x   .   o5*b  10 |  5  10 |  5  0  2 |  * 12 *
. x5/2o3/2o5*b  20 |  0  60 |  0 12 12 |  *  * 2

x x5/3o3o5*b

. .   . .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x .   . .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x   . .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/3o .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o5*b |  5 |  0   5 |  *  * 24 |  0  1 1
-------------+----+--------+----------+--------
x x5/3o .     10 |  5  10 |  5  2  0 | 12  * *
x x   . o5*b  10 |  5  10 |  5  0  2 |  * 12 *
. x5/3o3o5*b  20 |  0  60 |  0 12 12 |  *  * 2

x x5/3o3/2o5/4*b

. .   .   .      | 40 |  1   6 |  6  3  3 |  3  3 1
-----------------+----+--------+----------+--------
x .   .   .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .      |  2 |  * 120 |  1  1  1 |  1  1 1
-----------------+----+--------+----------+--------
x x   .   .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/3o   .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o5/4*b |  5 |  0   5 |  *  * 24 |  0  1 1
-----------------+----+--------+----------+--------
x x5/3o   .       10 |  5  10 |  5  2  0 | 12  * *
x x   .   o5/4*b  10 |  5  10 |  5  0  2 |  * 12 *
. x5/3o3/2o5/4*b  20 |  0  60 |  0 12 12 |  *  * 2

© 2004-2024
top of page