Acronym gidtiddip
Name great-ditrigonal-icosidodecahedron prism
Cross sections
 ©
Circumradius 1
Colonel of regiment sidtiddip
Dihedral angles
  • at {5} between gidtid and pip:   90°
  • at {3} between gidtid and trip:   90°
  • at {4} between pip and trip:   arccos(sqrt[(5-2 sqrt(5))/15]) = 79.187683°
External
links
hedrondude  

As abstract polytope gidtiddip is isomorphic to sidtiddip, thereby replacing pentagons by pentagrams, resp. replacing pip by stip and gidtid by sidtid.


Incidence matrix according to Dynkin symbol

x x5o3o3/2*b

. . . .      | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x . . .      |  2 | 20   * |  6  0  0 |  3  3 0
. x . .      |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x . .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5o .      |  5 |  0   5 |  * 24  * |  1  0 1
. x . o3/2*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5o .       10 |  5  10 |  5  2  0 | 12  * *
x x . o3/2*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5o3o3/2*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5o3/2o3*b

. . .   .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x . .   .    |  2 | 20   * |  6  0  0 |  3  3 0
. x .   .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x .   .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5o   .    |  5 |  0   5 |  * 24  * |  1  0 1
. x .   o3*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5o   .     10 |  5  10 |  5  2  0 | 12  * *
x x .   o3*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5o3/2o3*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5/4o3o3*b

. .   . .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x .   . .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x   . .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/4o .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o3*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5/4o .     10 |  5  10 |  5  2  0 | 12  * *
x x   . o3*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5/4o3o3*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5/4o3/2o3/2*b

. .   .   .      | 40 |  1   6 |  6  3  3 |  3  3 1
-----------------+----+--------+----------+--------
x .   .   .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .      |  2 |  * 120 |  1  1  1 |  1  1 1
-----------------+----+--------+----------+--------
x x   .   .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/4o   .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o3/2*b |  3 |  0   3 |  *  * 40 |  0  1 1
-----------------+----+--------+----------+--------
x x5/4o   .       10 |  5  10 |  5  2  0 | 12  * *
x x   .   o3/2*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5/4o3/2o3/2*b  20 |  0  60 |  0 12 20 |  *  * 2

© 2004-2019
top of page