Acronym gidtiddip
Name great-ditrigonary-icosidodecahedron prism
Cross sections
 ©
Circumradius 1
Colonel of regiment sidtiddip
Dihedral angles
  • at {5} between gidtid and pip:   90°
  • at {3} between gidtid and trip:   90°
  • at {4} between pip and trip:   arccos(sqrt[(5-2 sqrt(5))/15]) = 79.187683°
Face vector 40, 140, 124, 34
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki  

As abstract polytope gidtiddip is isomorphic to sidtiddip, thereby replacing pentagons by pentagrams, resp. replacing pip by stip and gidtid by sidtid.


Incidence matrix according to Dynkin symbol

x x5o3o3/2*b

. . . .      | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x . . .      |  2 | 20   * |  6  0  0 |  3  3 0
. x . .      |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x . .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5o .      |  5 |  0   5 |  * 24  * |  1  0 1
. x . o3/2*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5o .       10 |  5  10 |  5  2  0 | 12  * *
x x . o3/2*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5o3o3/2*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5o3/2o3*b

. . .   .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x . .   .    |  2 | 20   * |  6  0  0 |  3  3 0
. x .   .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x .   .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5o   .    |  5 |  0   5 |  * 24  * |  1  0 1
. x .   o3*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5o   .     10 |  5  10 |  5  2  0 | 12  * *
x x .   o3*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5o3/2o3*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5/4o3o3*b

. .   . .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x .   . .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x   . .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/4o .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o3*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5/4o .     10 |  5  10 |  5  2  0 | 12  * *
x x   . o3*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5/4o3o3*b  20 |  0  60 |  0 12 20 |  *  * 2

x x5/4o3/2o3/2*b

. .   .   .      | 40 |  1   6 |  6  3  3 |  3  3 1
-----------------+----+--------+----------+--------
x .   .   .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .      |  2 |  * 120 |  1  1  1 |  1  1 1
-----------------+----+--------+----------+--------
x x   .   .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/4o   .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o3/2*b |  3 |  0   3 |  *  * 40 |  0  1 1
-----------------+----+--------+----------+--------
x x5/4o   .       10 |  5  10 |  5  2  0 | 12  * *
x x   .   o3/2*b   6 |  3   6 |  3  0  2 |  * 20 *
. x5/4o3/2o3/2*b  20 |  0  60 |  0 12 20 |  *  * 2

© 2004-2024
top of page